I am using Keras with tensorflow backend and I am curious whether it is possible to skip a layer during backpropagation but have it execute in the forward pass. So here is what I mean
Lambda (lambda x: a(x))
I want to apply a
to x
in the forward pass but I do not want a to be included in the derivation when the backprop takes place.
I was trying to find a solution bit I could not find anything. Can somebody help me out here?
UPDATE 2
In addition to tf.py_func
, there is now an official guide on how to add a custom op.
UPDATE
See this question for an example of writing a custom op with gradient purely in Python without needing to rebuild anything. Note that there are some limitations to the method (see the documentation of tf.py_func
).
Not exactly a solution to the problem, but still kind of an answer and too long for comments.
That's not even a Keras issue, but a TensorFlow one. Each op defines its own gradient computation that is used during backpropagation. I you really wanted to something like that, you would need to implement the op into TensorFlow yourself (no easy feat) and define the gradient that you want - because you can't have "no gradient", if anything it would be 1 or 0 (otherwise you can't go on with backpropagation). There is a tf.NoGradient
function in TensorFlow which causes an op to propagate zeros, but I don't think it is meant to / can be used out of TensorFlow own internals.
UPDATE
Okay so a bit more of context. TensorFlow graphs are built of ops, which are implemented by kernels; this is basically a 1-to-1 mapping, except that there may be for example a CPU and a GPU kernel for an op, hence the differentiation. The set of ops supported by TensorFlow is usually static, I mean it can change with newer versions, but in principle you cannot add your own ops, because the ops of a graph go into the Protobuf serialized format, so if you made your own ops then you would not be able to share your graph. Ops are then defined at C++ level with the macro REGISTER_OP
(see for example here), and kernels with REGISTER_KERNEL_BUILDER
(see for example here).
Now, where do gradients come into play? Well, the funny thing is that the gradient of an op is not defined at C++ level; there are ops (and kernels) that implement the gradient of other ops (if you look at the previous files you'll find ops/kernels with the name ending in Grad
), but (as far as I'm aware) these are not explicitly "linked" at this level. It seems that the associations between ops and their gradients is defined in Python, usually via tf.RegisterGradient
or the aforementioned tf.NoGradient
(see for example here, Python modules starting with gen_
are autogenerated with the help of the C++ macros); these registrations inform the backpropagation algorithm about how to compute the gradient of the graph.
So, how to actually work this out? Well, you need to create at least one op in C++ with the corresponding kernel/s implementing the computation that you want for your forward pass. Then, if the gradient computation that you want to use can be expressed with existing TensorFlow ops (which is most likely), you would just need to call tf.RegisterGradient
in Python and do the computation there in "standard" TensorFlow. This is quite complicated, but the good news is it's possible, and there's even an example for it (although I think they kinda forgot the gradient registration part in that one)! As you will see, the process involves compiling the new op code into a library (btw I'm not sure if any of this may work on Windows) that is then loaded from Python (obviously this involves going through the painful process of manual compilation of TensorFlow with Bazel). A possibly more realistic example can be found in TensorFlow Fold, an extension of TensorFlow for structured data that register (as of one) one custom operation here through a macro defined here that calls REGISTER_OP
, and then in Python it loads the library and register its gradient here through their own registration function defined here that simply calls tf.NotDifferentiable
(another name for tf.NoGradient
)
tldr: It is rather hard, but it can be done and there are even a couple of examples out there.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With