I have a ragged tensor of dimensions [BATCH_SIZE, TIME_STEPS, EMBEDDING_DIM]
. I want to augment the last axis with data from another tensor of shape [BATCH_SIZE, AUG_DIM]
. Each time step of a given example gets augmented with the same value.
If the tensor wasn't ragged with varying TIME_STEPS
for each example, I could simply reshape the second tensor with tf.repeat
and then use tf.concat
:
import tensorflow as tf
# create data
# shape: [BATCH_SIZE, TIME_STEPS, EMBEDDING_DIM]
emb = tf.constant([[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [0, 0, 0]]])
# shape: [BATCH_SIZE, 1, AUG_DIM]
aug = tf.constant([[[8]], [[9]]])
# concat
aug = tf.repeat(aug, emb.shape[1], axis=1)
emb_aug = tf.concat([emb, aug], axis=-1)
This doesn't approach work when emb
is ragged since emb.shape[1]
is unknown and varies across examples:
# rag and remove padding
emb = tf.RaggedTensor.from_tensor(emb, padding=(0, 0, 0))
# reshape for augmentation - this doesn't work
aug = tf.repeat(aug, emb.shape[1], axis=1)
ValueError: Attempt to convert a value (None) with an unsupported type (<class 'NoneType'>) to a Tensor.
The goal is to create a ragged tensor emb_aug
which looks like this:
<tf.RaggedTensor [[[1, 2, 3, 8], [4, 5, 6, 8]], [[1, 2, 3 ,9]]]>
Any ideas?
The easiest way to do this is to just make your ragged tensor a regular tensor by using tf.RaggedTensor.to_tensor()
and then do the rest of your solution. I'll assume that you need the tensor to remain ragged. The key is to find the row_lengths
of each batch in your ragged tensor, and then use this information to make your augmentation tensor ragged.
Example:
import tensorflow as tf
# data
emb = tf.constant([[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [0, 0, 0]]])
aug = tf.constant([[[8]], [[9]]])
# make embeddings ragged for testing
emb_r = tf.RaggedTensor.from_tensor(emb, padding=(0, 0, 0))
print(emb_r.shape)
# (2, None, 3)
Here we'll use a combination of row_lengths
and sequence_mask
to create a new ragged tensor.
# find the row lengths of the embeddings
rl = emb_r.row_lengths()
print(rl)
# tf.Tensor([2 1], shape=(2,), dtype=int64)
# find the biggest row length
max_rl = tf.math.reduce_max(rl)
print(max_rl)
# tf.Tensor(2, shape=(), dtype=int64)
# repeat the augmented data `max_rl` number of times
aug_t = tf.repeat(aug, repeats=max_rl, axis=1)
print(aug_t)
# tf.Tensor(
# [[[8]
# [8]]
#
# [[9]
# [9]]], shape=(2, 2, 1), dtype=int32)
# create a mask
msk = tf.sequence_mask(rl)
print(msk)
# tf.Tensor(
# [[ True True]
# [ True False]], shape=(2, 2), dtype=bool)
From here we can use tf.ragged.boolean_mask
to make the augmented data ragged
# make the augmented data a ragged tensor
aug_r = tf.ragged.boolean_mask(aug_t, msk)
print(aug_r)
# <tf.RaggedTensor [[[8], [8]], [[9]]]>
# concatenate!
output = tf.concat([emb_r, aug_r], 2)
print(output)
# <tf.RaggedTensor [[[1, 2, 3, 8], [4, 5, 6, 8]], [[1, 2, 3, 9]]]>
You can find the list of tensorflow methods that support ragged tensors here
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With