I'm using StaticHashTable
as in one Lambda layer after the output layer of my tf.keras model. It's quite simple actually: I've a text classification models and I'm adding a simple lambda layer that takes the model.output
and convert the model_id to more general labels. I can save this version of model with model.save(... as H5 format..) without any issue, and can load it back and use it without any problem.
Issue is, when I try to export my TF2.2.0 model for TF-Serving, I can't find how I can export it. Here is what I can do with TF1.X or with TF2.X + tf.compat.v1.disable_eager_execution()
tf.compat.v1.disable_eager_execution()
version = 1
name = 'tmp_model'
export_path = f'/opt/tf_serving/{name}/{version}'
builder = saved_model_builder.SavedModelBuilder(export_path)
model_signature = tf.compat.v1.saved_model.predict_signature_def(
inputs={
'input': model.input
},
outputs={
'output': model.output
}
)
with tf.compat.v1.keras.backend.get_session() as sess:
builder.add_meta_graph_and_variables(
sess=sess,
tags=[tf.compat.v1.saved_model.tag_constants.SERVING],
signature_def_map={
'predict': model_signature
},
# For initializing Hashtables
main_op=tf.compat.v1.tables_initializer()
)
builder.save()
This will save my models with TF1.X format for serving and I can use it without any issue. Things is, I'm using LSTM layer and I want to use my model on GPU. By the documentation, if I disable the eager mode, I can't use the GPU-version of LSTM with TF2.2. And without going through above mentioned code, I can't save my model for serving wrt TF2.2 standard and StaticHashTables.
Here is how I'm trying to export my TF2.2 model which is using StaticHashTables in final layer; and which is giving error as below:
class MyModule(tf.Module):
def __init__(self, model):
super(MyModule, self).__init__()
self.model = model
@tf.function(input_signature=[tf.TensorSpec(shape=(None, 16), dtype=tf.int32, name='input')])
def predict(self, input):
result = self.model(input)
return {"output": result}
version = 1
name = 'tmp_model'
export_path = f'/opt/tf_serving/{name}/{version}'
module = MyModule(model)
tf.saved_model.save(module, export_path, signatures={"predict": module.predict.get_concrete_function()})
Error:
AssertionError: Tried to export a function which references untracked object Tensor("2907:0", shape=(), dtype=resource).
TensorFlow objects (e.g. tf.Variable) captured by functions must be tracked by assigning them to an attribute of a tracked object or assigned to an attribute of the main object directly.
Any suggestion or am I missing anything on exporting TF2.2 model which is using the StaticHashTables
in final Lambda layer for TensorFlow Serving?
More info here: https://github.com/tensorflow/serving/issues/1719
Thanks!
I had the same issue and I found the answer creating a custom layer with the lookup transformation and then addin that layer to my model. Somebody else put the answer here on stackoverflow but I cannot find this again so I will put it for you. The reason is that the variables and the other elements from outside must be trackeable and I didn't find other way to make them trackeable but to create a Custom layer because those are trackeable and don't need to add aditional assets when exporting.
This is the code:
Here is the custom layer specific to make the transformation before the model (includes the tokenizer as a lookup from a static table, and then the padding:
class VocabLookup(tf.keras.layers.Layer):
def __init__(self, word_index, **kwargs):
self.word_index = word_index
self.vocab = list(word_index.keys())
self.indices = tf.convert_to_tensor(list(word_index.values()), dtype=tf.int64)
vocab_initializer = tf.lookup.KeyValueTensorInitializer(self.vocab, self.indices)
self.table = tf.lookup.StaticHashTable(vocab_initializer, default_value=1)
super(VocabLookup, self).__init__(**kwargs)
def build(self, input_shape):
self.built = True
def sentences_transform(self,tx):
x = tf.strings.lower(tx)
x = tf.strings.regex_replace(x,"[,.:;]", " ")
x = tf.strings.regex_replace(x,"á", "a")
x = tf.strings.regex_replace(x,"é", "e")
x = tf.strings.regex_replace(x,"í", "i")
x = tf.strings.regex_replace(x,"ó", "i")
x = tf.strings.regex_replace(x,"ú", "u")
x = tf.strings.regex_replace(x,"ü", "u")
x = tf.strings.regex_replace(x,"Á", "a")
x = tf.strings.regex_replace(x,"É", "e")
x = tf.strings.regex_replace(x,"Í", "i")
x = tf.strings.regex_replace(x,"Ó", "o")
x = tf.strings.regex_replace(x,"Ú", "u")
x = tf.strings.regex_replace(x,"Ü", "u")
x = tf.strings.regex_replace(x,"Ü", "u")
x = tf.strings.regex_replace(x,"[?¿¡!@#$-_\?+¿{}*/]", "")
x = tf.strings.regex_replace(x," +", " ")
x = tf.strings.strip(x)
x = tf.strings.split(x)
x = self.table.lookup(x)
x_as_vector = tf.reshape(x, [-1])
zero_padding = tf.zeros([191] - tf.shape(x_as_vector), dtype=x.dtype)
x = tf.concat([x_as_vector, zero_padding], 0)
return x
def call(self, inputs):
x = tf.map_fn(lambda tx: self.sentences_transform(tx), elems = inputs,dtype=tf.int64)
return x
def get_config(self):
return {'word_index': self.word_index}
In my case I create the layer to receive the word_index from a tokenizer as an Input. Then, you can use a Layer like this one inside your model:
with open(<tokenizer_path>) as f:
data = json.load(f)
tokenizer = tokenizer_from_json(data)
moderator = load_model(<final model path ('.h5')>)
word_index = tokenizer.word_index
text_bytes = tf.keras.Input(shape=(), name='image_bytes', dtype=tf.string)
x = VocabLookup(word_index)(text_bytes)
output = moderator(x)
model = tf.keras.models.Model(text_bytes, output)
If you make the summary you will have something like this:
model.summary()
Model: "functional_57"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
image_bytes (InputLayer) [(None,)] 0
_________________________________________________________________
vocab_lookup_60 (VocabLookup (None, None) 0
_________________________________________________________________
sequential_1 (Sequential) (None, 1) 1354369
=================================================================
Total params: 1,354,369
Trainable params: 1,354,369
Non-trainable params: 0
With this steps you finally can save as a TF2 serving model
save_path = <your_serving_model_path>
tf.saved_model.save(model, save_path)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With