I'm trying to train a basic CNN on the image dataset that contains faces of celebrities with the class assigned corresponding to each person. Given that there are about 10,000 classes I used sparse_categorical_crossentropy rather than one-hot encoding the classes, however as soon as the network starts training the loss is stuck at one number and after several batches is goes to NaN I tried different scaling of the images and a smaller network but with no luck. Any clues on what might be causing the NaN?
Function that generates batches:
def Generator(data, label, batch_size):
url = "../input/celeba-dataset/img_align_celeba/img_align_celeba/"
INPUT_SHAPE = (109, 109)
i = 0
while True:
image_batch = [ ]
label_batch = [ ]
for b in range(batch_size):
if i == len(data):
i = 0
data, label = shuffle(data, label)
sample = data[i]
label_batch.append(label[i])
i += 1
image = cv2.resize(cv2.imread(url + sample), INPUT_SHAPE)
image_batch.append((image.astype(float)) / 255)
yield (np.array(image_batch), np.array(label_batch))
The model:
class CNN():
def __init__(self, train, val, y_train, y_val, batch_size):
## Load the batch generator
self.train_batch_gen = Generator(train, y_train, batch_size)
self.val_batch_gen = Generator(val, y_val, batch_size)
self.input_shape = (109, 109, 3)
self.num_classes = len(np.unique(y_train))
self.len_train = len(train)
self.len_val = len(val)
self.batch_size = batch_size
self.model = self.buildModel()
def buildModel(self):
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', padding="same", input_shape=self.input_shape))
model.add(layers.Conv2D(64, (3, 3), activation='relu', padding="same", input_shape=self.input_shape))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu', padding="same"))
model.add(layers.Conv2D(128, (3, 3), activation='relu', padding="same"))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(96, (3, 3), activation='relu', padding="same"))
model.add(layers.Conv2D(192, (3, 3), activation='relu', padding="same"))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu', padding="same"))
model.add(layers.Conv2D(256, (3, 3), activation='relu', padding="same"))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(160, (3, 3), activation='relu', padding="same"))
model.add(layers.Conv2D(320, (3, 3), activation='relu', padding="same"))
model.add(layers.AveragePooling2D(pool_size=(4, 4)))
model.add(layers.Flatten())
model.add(layers.Dense(128, activation='tanh'))
model.add(layers.Dropout(rate=0.1))
model.add(layers.Dense(self.num_classes, activation = "softmax")) #Classification layer or output layer
opt = tf.keras.optimizers.Adam(learning_rate=0.00001)
model.compile(optimizer=opt, loss='sparse_categorical_crossentropy', metrics=['accuracy'])
return model
def trainModel(self, epochs):
self.model.fit_generator(generator=self.train_batch_gen,
steps_per_epoch = int(self.len_train // self.batch_size),
epochs=epochs,
validation_data = self.val_batch_gen,
validation_steps = int(self.len_val // self.batch_size))
If the number\values are not properly represented or in case if you have any space at the beginning of the value the system recognizes thats nan.
What are NaN values? NaN or Not a Number are special values in DataFrame and numpy arrays that represent the missing of value in a cell. In programming languages they are also represented, for example in Python they are represented as None value.
In my case, I used sparse_categorical_crossentropy
with labels numbered from [1,2,3]
(3 classes). In this case it produced NaNs from the start.
When I changed the labels from [1,2,3]
to [0,1,2]
the problem has disappeared.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With