Given a function with at least n
arguments, I want to rotate the first argument so that it becomes the n
th argument. For example (in untyped lambda calculus):
r(λa. a) = λa. a
r(λa. λb. a b) = λb. λa. a b
r(λa. λb. λc. a b c) = λb. λc. λa. a b c
r(λa. λb. λc. λd. a b c d) = λb. λc. λd. λa. a b c d
And so on.
Can you write r
in a generic way? What if you know that n >= 2
?
Here's the problem stated in Scala:
trait E
case class Lam(i: E => E) extends E
case class Lit(i: Int) extends E
case class Ap(e: E, e: E) extends E
The rotation should take Lam(a => Lam(b => Lam(c => Ap(Ap(a, b), c))))
and return Lam(b => Lam(c => Lam(a => Ap(Ap(a, b), c))))
, for example.
The trick is to tag the "final" value of the functions involved, since to normal haskell, both a -> b
and a -> (b->c)
are just functions of a single variable.
If we do that, though, we can do this.
{-# LANGUAGE TypeFamilies,FlexibleInstances,FlexibleContexts #-}
module Rotate where
data Result a = Result a
class Rotate f where
type After f
rotate :: f -> After f
instance Rotate (a -> Result b) where
type After (a -> Result b) = a -> Result b
rotate = id
instance Rotate (a -> c) => Rotate (a -> b -> c) where
type After (a -> b -> c) = b -> After (a -> c)
rotate = (rotate .) . flip
Then, to see it in action:
f0 :: Result a
f0 = Result undefined
f1 :: Int -> Result a
f1 = const f0
f2 :: Char -> Int -> Result a
f2 = const f1
f3 :: Float -> Char -> Int -> Result a
f3 = const f2
f1' :: Int -> Result a
f1' = rotate f1
f2' :: Int -> Char -> Result a
f2' = rotate f2
f3' :: Char -> Int -> Float -> Result a
f3' = rotate f3
It's probably impossible without violating the ‘legitimacy’ of HOAS, in the sense that the E => E
must be used not just for binding in the object language, but for computation in the meta language. That said, here's a solution in Haskell. It abuses a Literal
node to drop in a unique ID for later substitution. Enjoy!
import Control.Monad.State
-- HOAS representation
data Expr = Lam (Expr -> Expr)
| App Expr Expr
| Lit Integer
-- Rotate transformation
rot :: Expr -> Expr
rot e = case e of
Lam f -> descend uniqueID (f (Lit uniqueID))
_ -> e
where uniqueID = 1 + maxLit e
descend :: Integer -> Expr -> Expr
descend i (Lam f) = Lam $ descend i . f
descend i e = Lam $ \a -> replace i a e
replace :: Integer -> Expr -> Expr -> Expr
replace i e (Lam f) = Lam $ replace i e . f
replace i e (App e1 e2) = App (replace i e e1) (replace i e e2)
replace i e (Lit j)
| i == j = e
| otherwise = Lit j
maxLit :: Expr -> Integer
maxLit e = execState (maxLit' e) (-2)
where maxLit' (Lam f) = maxLit' (f (Lit 0))
maxLit' (App e1 e2) = maxLit' e1 >> maxLit' e2
maxLit' (Lit i) = get >>= \k -> when (i > k) (put i)
-- Output
toStr :: Integer -> Expr -> State Integer String
toStr k e = toStr' e
where toStr' (Lit i)
| i >= k = return $ 'x':show i -- variable
| otherwise = return $ show i -- literal
toStr' (App e1 e2) = do
s1 <- toStr' e1
s2 <- toStr' e2
return $ "(" ++ s1 ++ " " ++ s2 ++ ")"
toStr' (Lam f) = do
i <- get
modify (+ 1)
s <- toStr' (f (Lit i))
return $ "\\x" ++ show i ++ " " ++ s
instance Show Expr where
show e = evalState (toStr m e) m
where m = 2 + maxLit e
-- Examples
ex2, ex3, ex4 :: Expr
ex2 = Lam(\a -> Lam(\b -> App a (App b (Lit 3))))
ex3 = Lam(\a -> Lam(\b -> Lam(\c -> App a (App b c))))
ex4 = Lam(\a -> Lam(\b -> Lam(\c -> Lam(\d -> App (App a b) (App c d)))))
check :: Expr -> IO ()
check e = putStrLn(show e ++ " ===> \n" ++ show (rot e) ++ "\n")
main = check ex2 >> check ex3 >> check ex4
with the following result:
\x5 \x6 (x5 (x6 3)) ===>
\x5 \x6 (x6 (x5 3))
\x2 \x3 \x4 (x2 (x3 x4)) ===>
\x2 \x3 \x4 (x4 (x2 x3))
\x2 \x3 \x4 \x5 ((x2 x3) (x4 x5)) ===>
\x2 \x3 \x4 \x5 ((x5 x2) (x3 x4))
(Don't be fooled by the similar-looking variable names. This is the rotation you seek, modulo alpha-conversion.)
Yes, I'm posting another answer. And it still might not be exactly what you're looking for. But I think it might be of use nonetheless. It's in Haskell.
data LExpr = Lambda Char LExpr
| Atom Char
| App LExpr LExpr
instance Show LExpr where
show (Atom c) = [c]
show (App l r) = "(" ++ show l ++ " " ++ show r ++ ")"
show (Lambda c expr) = "(λ" ++ [c] ++ ". " ++ show expr ++ ")"
So here I cooked up a basic algebraic data type for expressing lambda calculus. I added a simple, but effective, custom Show instance.
ghci> App (Lambda 'a' (Atom 'a')) (Atom 'b')
((λa. a) b)
For fun, I threw in a simple reduce
method, with helper replace
. Warning: not carefully thought out or tested. Do not use for industrial purposes. Cannot handle certain nasty expressions. :P
reduce (App (Lambda c target) expr) = reduce $ replace c (reduce expr) target
reduce v = v
replace c expr av@(Atom v)
| v == c = expr
| otherwise = av
replace c expr ap@(App l r)
= App (replace c expr l) (replace c expr r)
replace c expr lv@(Lambda v e)
| v == c = lv
| otherwise = (Lambda v (replace c expr e))
It seems to work, though that's really just me getting sidetracked. (it
in ghci refers to the last value evaluated at the prompt)
ghci> reduce it
b
So now for the fun part, rotate
. So I figure I can just peel off the first layer, and if it's a Lambda, great, I'll save the identifier and keep drilling down until I hit a non-Lambda. Then I'll just put the Lambda and identifier right back in at the "last" spot. If it wasn't a Lambda in the first place, then do nothing.
rotate (Lambda c e) = drill e
where drill (Lambda c' e') = Lambda c' (drill e') -- keep drilling
drill e' = Lambda c e' -- hit a non-Lambda, put c back
rotate e = e
Forgive the unimaginative variable names. Sending this through ghci shows good signs:
ghci> Lambda 'a' (Atom 'a')
(λa. a)
ghci> rotate it
(λa. a)
ghci> Lambda 'a' (Lambda 'b' (App (Atom 'a') (Atom 'b')))
(λa. (λb. (a b)))
ghci> rotate it
(λb. (λa. (a b)))
ghci> Lambda 'a' (Lambda 'b' (Lambda 'c' (App (App (Atom 'a') (Atom 'b')) (Atom 'c'))))
(λa. (λb. (λc. ((a b) c))))
ghci> rotate it
(λb. (λc. (λa. ((a b) c))))
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With