I have the following (simplified) dataframe:
df = pd.DataFrame({'X': [1, 2, 3, 4, 5,6,7,8,9,10],
'Y': [10,20,30,40,50,-10,-20,-30,-40,-50],
'Z': [20,18,16,14,12,10,8,6,4,2]},index=list('ABCDEFGHIJ'))
Which gives the following:
X Y Z
A 1 10 20
B 2 20 18
C 3 30 16
D 4 40 14
E 5 50 12
F 6 -10 10
G 7 -20 8
H 8 -30 6
I 9 -40 4
J 10 -50 2
I want to create a new dataframe that returns the index of the n smallest values, by column.
Desired output (say, 3 smallest values):
X Y Z
0 A J J
1 B I I
2 C H H
What is the best way to do this?
You can use apply
with nsmallest
:
n = 3
df.apply(lambda x: pd.Series(x.nsmallest(n).index))
# X Y Z
#0 A J J
#1 B I I
#2 C H H
Faster numpy solution with numpy.argsort
:
N = 3
a = np.argsort(-df.values, axis=0)[-1:-1-N:-1]
print (a)
[[0 9 9]
[1 8 8]
[2 7 7]]
b = pd.DataFrame(df.index[a], columns=df.columns)
print (b)
X Y Z
0 A J J
1 B I I
2 C H H
Timings:
In [111]: %timeit (pd.DataFrame(df.index[np.argsort(-df.values, axis=0)[-1:-1-N:-1]], columns=df.columns))
159 µs ± 1.37 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
In [112]: %timeit (df.apply(lambda x: pd.Series(x.nsmallest(N).index)))
3.52 ms ± 49.7 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With