Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Replacing Numpy elements if condition is met

People also ask

How do you replace an array value in Python?

There are three ways to replace an item in a Python list. You can use list indexing or a for loop to replace an item. If you want to create a new list based on an existing list and make a change, you can use a list comprehension. You may decide that you want to change a value in a list.

How do I replace missing values in NumPy?

In NumPy, to replace missing values NaN ( np. nan ) in ndarray with other numbers, use np. nan_to_num() or np. isnan() .


>>> import numpy as np
>>> a = np.random.randint(0, 5, size=(5, 4))
>>> a
array([[4, 2, 1, 1],
       [3, 0, 1, 2],
       [2, 0, 1, 1],
       [4, 0, 2, 3],
       [0, 0, 0, 2]])
>>> b = a < 3
>>> b
array([[False,  True,  True,  True],
       [False,  True,  True,  True],
       [ True,  True,  True,  True],
       [False,  True,  True, False],
       [ True,  True,  True,  True]], dtype=bool)
>>> 
>>> c = b.astype(int)
>>> c
array([[0, 1, 1, 1],
       [0, 1, 1, 1],
       [1, 1, 1, 1],
       [0, 1, 1, 0],
       [1, 1, 1, 1]])

You can shorten this with:

>>> c = (a < 3).astype(int)

>>> a = np.random.randint(0, 5, size=(5, 4))
>>> a
array([[0, 3, 3, 2],
       [4, 1, 1, 2],
       [3, 4, 2, 4],
       [2, 4, 3, 0],
       [1, 2, 3, 4]])
>>> 
>>> a[a > 3] = -101
>>> a
array([[   0,    3,    3,    2],
       [-101,    1,    1,    2],
       [   3, -101,    2, -101],
       [   2, -101,    3,    0],
       [   1,    2,    3, -101]])
>>>

See, eg, Indexing with boolean arrays.


The quickest (and most flexible) way is to use np.where, which chooses between two arrays according to a mask(array of true and false values):

import numpy as np
a = np.random.randint(0, 5, size=(5, 4))
b = np.where(a<3,0,1)
print('a:',a)
print()
print('b:',b)

which will produce:

a: [[1 4 0 1]
 [1 3 2 4]
 [1 0 2 1]
 [3 1 0 0]
 [1 4 0 1]]

b: [[0 1 0 0]
 [0 1 0 1]
 [0 0 0 0]
 [1 0 0 0]
 [0 1 0 0]]

You can create your mask array in one step like this

mask_data = input_mask_data < 3

This creates a boolean array which can then be used as a pixel mask. Note that we haven't changed the input array (as in your code) but have created a new array to hold the mask data - I would recommend doing it this way.

>>> input_mask_data = np.random.randint(0, 5, (3, 4))
>>> input_mask_data
array([[1, 3, 4, 0],
       [4, 1, 2, 2],
       [1, 2, 3, 0]])
>>> mask_data = input_mask_data < 3
>>> mask_data
array([[ True, False, False,  True],
       [False,  True,  True,  True],
       [ True,  True, False,  True]], dtype=bool)
>>>