Principal component analysis (PCA). Linear dimensionality reduction using Singular Value Decomposition of the data to project it to a lower dimensional space. The input data is centered but not scaled for each feature before applying the SVD.
Principal component analysis, or PCA, is a statistical procedure that allows you to summarize the information content in large data tables by means of a smaller set of “summary indices” that can be more easily visualized and analyzed.
What Is Principal Component Analysis? Principal Component Analysis, or PCA, is a dimensionality-reduction method that is often used to reduce the dimensionality of large data sets, by transforming a large set of variables into a smaller one that still contains most of the information in the large set.
Months later, here's a small class PCA, and a picture:
#!/usr/bin/env python
""" a small class for Principal Component Analysis
Usage:
p = PCA( A, fraction=0.90 )
In:
A: an array of e.g. 1000 observations x 20 variables, 1000 rows x 20 columns
fraction: use principal components that account for e.g.
90 % of the total variance
Out:
p.U, p.d, p.Vt: from numpy.linalg.svd, A = U . d . Vt
p.dinv: 1/d or 0, see NR
p.eigen: the eigenvalues of A*A, in decreasing order (p.d**2).
eigen[j] / eigen.sum() is variable j's fraction of the total variance;
look at the first few eigen[] to see how many PCs get to 90 %, 95 % ...
p.npc: number of principal components,
e.g. 2 if the top 2 eigenvalues are >= `fraction` of the total.
It's ok to change this; methods use the current value.
Methods:
The methods of class PCA transform vectors or arrays of e.g.
20 variables, 2 principal components and 1000 observations,
using partial matrices U' d' Vt', parts of the full U d Vt:
A ~ U' . d' . Vt' where e.g.
U' is 1000 x 2
d' is diag([ d0, d1 ]), the 2 largest singular values
Vt' is 2 x 20. Dropping the primes,
d . Vt 2 principal vars = p.vars_pc( 20 vars )
U 1000 obs = p.pc_obs( 2 principal vars )
U . d . Vt 1000 obs, p.obs( 20 vars ) = pc_obs( vars_pc( vars ))
fast approximate A . vars, using the `npc` principal components
Ut 2 pcs = p.obs_pc( 1000 obs )
V . dinv 20 vars = p.pc_vars( 2 principal vars )
V . dinv . Ut 20 vars, p.vars( 1000 obs ) = pc_vars( obs_pc( obs )),
fast approximate Ainverse . obs: vars that give ~ those obs.
Notes:
PCA does not center or scale A; you usually want to first
A -= A.mean(A, axis=0)
A /= A.std(A, axis=0)
with the little class Center or the like, below.
See also:
http://en.wikipedia.org/wiki/Principal_component_analysis
http://en.wikipedia.org/wiki/Singular_value_decomposition
Press et al., Numerical Recipes (2 or 3 ed), SVD
PCA micro-tutorial
iris-pca .py .png
"""
from __future__ import division
import numpy as np
dot = np.dot
# import bz.numpyutil as nu
# dot = nu.pdot
__version__ = "2010-04-14 apr"
__author_email__ = "denis-bz-py at t-online dot de"
#...............................................................................
class PCA:
def __init__( self, A, fraction=0.90 ):
assert 0 <= fraction <= 1
# A = U . diag(d) . Vt, O( m n^2 ), lapack_lite --
self.U, self.d, self.Vt = np.linalg.svd( A, full_matrices=False )
assert np.all( self.d[:-1] >= self.d[1:] ) # sorted
self.eigen = self.d**2
self.sumvariance = np.cumsum(self.eigen)
self.sumvariance /= self.sumvariance[-1]
self.npc = np.searchsorted( self.sumvariance, fraction ) + 1
self.dinv = np.array([ 1/d if d > self.d[0] * 1e-6 else 0
for d in self.d ])
def pc( self ):
""" e.g. 1000 x 2 U[:, :npc] * d[:npc], to plot etc. """
n = self.npc
return self.U[:, :n] * self.d[:n]
# These 1-line methods may not be worth the bother;
# then use U d Vt directly --
def vars_pc( self, x ):
n = self.npc
return self.d[:n] * dot( self.Vt[:n], x.T ).T # 20 vars -> 2 principal
def pc_vars( self, p ):
n = self.npc
return dot( self.Vt[:n].T, (self.dinv[:n] * p).T ) .T # 2 PC -> 20 vars
def pc_obs( self, p ):
n = self.npc
return dot( self.U[:, :n], p.T ) # 2 principal -> 1000 obs
def obs_pc( self, obs ):
n = self.npc
return dot( self.U[:, :n].T, obs ) .T # 1000 obs -> 2 principal
def obs( self, x ):
return self.pc_obs( self.vars_pc(x) ) # 20 vars -> 2 principal -> 1000 obs
def vars( self, obs ):
return self.pc_vars( self.obs_pc(obs) ) # 1000 obs -> 2 principal -> 20 vars
class Center:
""" A -= A.mean() /= A.std(), inplace -- use A.copy() if need be
uncenter(x) == original A . x
"""
# mttiw
def __init__( self, A, axis=0, scale=True, verbose=1 ):
self.mean = A.mean(axis=axis)
if verbose:
print "Center -= A.mean:", self.mean
A -= self.mean
if scale:
std = A.std(axis=axis)
self.std = np.where( std, std, 1. )
if verbose:
print "Center /= A.std:", self.std
A /= self.std
else:
self.std = np.ones( A.shape[-1] )
self.A = A
def uncenter( self, x ):
return np.dot( self.A, x * self.std ) + np.dot( x, self.mean )
#...............................................................................
if __name__ == "__main__":
import sys
csv = "iris4.csv" # wikipedia Iris_flower_data_set
# 5.1,3.5,1.4,0.2 # ,Iris-setosa ...
N = 1000
K = 20
fraction = .90
seed = 1
exec "\n".join( sys.argv[1:] ) # N= ...
np.random.seed(seed)
np.set_printoptions( 1, threshold=100, suppress=True ) # .1f
try:
A = np.genfromtxt( csv, delimiter="," )
N, K = A.shape
except IOError:
A = np.random.normal( size=(N, K) ) # gen correlated ?
print "csv: %s N: %d K: %d fraction: %.2g" % (csv, N, K, fraction)
Center(A)
print "A:", A
print "PCA ..." ,
p = PCA( A, fraction=fraction )
print "npc:", p.npc
print "% variance:", p.sumvariance * 100
print "Vt[0], weights that give PC 0:", p.Vt[0]
print "A . Vt[0]:", dot( A, p.Vt[0] )
print "pc:", p.pc()
print "\nobs <-> pc <-> x: with fraction=1, diffs should be ~ 0"
x = np.ones(K)
# x = np.ones(( 3, K ))
print "x:", x
pc = p.vars_pc(x) # d' Vt' x
print "vars_pc(x):", pc
print "back to ~ x:", p.pc_vars(pc)
Ax = dot( A, x.T )
pcx = p.obs(x) # U' d' Vt' x
print "Ax:", Ax
print "A'x:", pcx
print "max |Ax - A'x|: %.2g" % np.linalg.norm( Ax - pcx, np.inf )
b = Ax # ~ back to original x, Ainv A x
back = p.vars(b)
print "~ back again:", back
print "max |back - x|: %.2g" % np.linalg.norm( back - x, np.inf )
# end pca.py
PCA using numpy.linalg.svd
is super easy. Here's a simple demo:
import numpy as np
import matplotlib.pyplot as plt
from scipy.misc import lena
# the underlying signal is a sinusoidally modulated image
img = lena()
t = np.arange(100)
time = np.sin(0.1*t)
real = time[:,np.newaxis,np.newaxis] * img[np.newaxis,...]
# we add some noise
noisy = real + np.random.randn(*real.shape)*255
# (observations, features) matrix
M = noisy.reshape(noisy.shape[0],-1)
# singular value decomposition factorises your data matrix such that:
#
# M = U*S*V.T (where '*' is matrix multiplication)
#
# * U and V are the singular matrices, containing orthogonal vectors of
# unit length in their rows and columns respectively.
#
# * S is a diagonal matrix containing the singular values of M - these
# values squared divided by the number of observations will give the
# variance explained by each PC.
#
# * if M is considered to be an (observations, features) matrix, the PCs
# themselves would correspond to the rows of S^(1/2)*V.T. if M is
# (features, observations) then the PCs would be the columns of
# U*S^(1/2).
#
# * since U and V both contain orthonormal vectors, U*V.T is equivalent
# to a whitened version of M.
U, s, Vt = np.linalg.svd(M, full_matrices=False)
V = Vt.T
# PCs are already sorted by descending order
# of the singular values (i.e. by the
# proportion of total variance they explain)
# if we use all of the PCs we can reconstruct the noisy signal perfectly
S = np.diag(s)
Mhat = np.dot(U, np.dot(S, V.T))
print "Using all PCs, MSE = %.6G" %(np.mean((M - Mhat)**2))
# if we use only the first 20 PCs the reconstruction is less accurate
Mhat2 = np.dot(U[:, :20], np.dot(S[:20, :20], V[:,:20].T))
print "Using first 20 PCs, MSE = %.6G" %(np.mean((M - Mhat2)**2))
fig, [ax1, ax2, ax3] = plt.subplots(1, 3)
ax1.imshow(img)
ax1.set_title('true image')
ax2.imshow(noisy.mean(0))
ax2.set_title('mean of noisy images')
ax3.imshow((s[0]**(1./2) * V[:,0]).reshape(img.shape))
ax3.set_title('first spatial PC')
plt.show()
You can use sklearn:
import sklearn.decomposition as deco
import numpy as np
x = (x - np.mean(x, 0)) / np.std(x, 0) # You need to normalize your data first
pca = deco.PCA(n_components) # n_components is the components number after reduction
x_r = pca.fit(x).transform(x)
print ('explained variance (first %d components): %.2f'%(n_components, sum(pca.explained_variance_ratio_)))
matplotlib.mlab has a PCA implementation.
You might have a look at MDP.
I have not had the chance to test it myself, but I've bookmarked it exactly for the PCA functionality.
SVD should work fine with 460 dimensions. It takes about 7 seconds on my Atom netbook. The eig() method takes more time (as it should, it uses more floating point operations) and will almost always be less accurate.
If you have less than 460 examples then what you want to do is diagonalize the scatter matrix (x - datamean)^T(x - mean), assuming your data points are columns, and then left-multiplying by (x - datamean). That might be faster in the case where you have more dimensions than data.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With