Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Rename result columns from Pandas aggregation ("FutureWarning: using a dict with renaming is deprecated")

I'm trying to do some aggregations on a pandas data frame. Here is a sample code:

import pandas as pd  df = pd.DataFrame({"User": ["user1", "user2", "user2", "user3", "user2", "user1"],                   "Amount": [10.0, 5.0, 8.0, 10.5, 7.5, 8.0]})  df.groupby(["User"]).agg({"Amount": {"Sum": "sum", "Count": "count"}})  Out[1]:        Amount                Sum Count User               user1   18.0     2 user2   20.5     3 user3   10.5     1 

Which generates the following warning:

FutureWarning: using a dict with renaming is deprecated and will be removed in a future version return super(DataFrameGroupBy, self).aggregate(arg, *args, **kwargs)

How can I avoid this?

like image 269
Victor Mayrink Avatar asked Jun 19 '17 16:06

Victor Mayrink


People also ask

How do I change the column name after Groupby in pandas?

The current (as of version 0.20) method for changing column names after a groupby operation is to chain the rename method. See this deprecation note in the documentation for more detail.


1 Answers

Use groupby apply and return a Series to rename columns

Use the groupby apply method to perform an aggregation that

  • Renames the columns
  • Allows for spaces in the names
  • Allows you to order the returned columns in any way you choose
  • Allows for interactions between columns
  • Returns a single level index and NOT a MultiIndex

To do this:

  • create a custom function that you pass to apply
  • This custom function is passed each group as a DataFrame
  • Return a Series
  • The index of the Series will be the new columns

Create fake data

df = pd.DataFrame({"User": ["user1", "user2", "user2", "user3", "user2", "user1", "user3"],                   "Amount": [10.0, 5.0, 8.0, 10.5, 7.5, 8.0, 9],                   'Score': [9, 1, 8, 7, 7, 6, 9]}) 

enter image description here

create custom function that returns a Series
The variable x inside of my_agg is a DataFrame

def my_agg(x):     names = {         'Amount mean': x['Amount'].mean(),         'Amount std':  x['Amount'].std(),         'Amount range': x['Amount'].max() - x['Amount'].min(),         'Score Max':  x['Score'].max(),         'Score Sum': x['Score'].sum(),         'Amount Score Sum': (x['Amount'] * x['Score']).sum()}      return pd.Series(names, index=['Amount range', 'Amount std', 'Amount mean',                                    'Score Sum', 'Score Max', 'Amount Score Sum']) 

Pass this custom function to the groupby apply method

df.groupby('User').apply(my_agg) 

enter image description here

The big downside is that this function will be much slower than agg for the cythonized aggregations

Using a dictionary with groupby agg method

Using a dictionary of dictionaries was removed because of its complexity and somewhat ambiguous nature. There is an ongoing discussion on how to improve this functionality in the future on github Here, you can directly access the aggregating column after the groupby call. Simply pass a list of all the aggregating functions you wish to apply.

df.groupby('User')['Amount'].agg(['sum', 'count']) 

Output

       sum  count User               user1  18.0      2 user2  20.5      3 user3  10.5      1 

It is still possible to use a dictionary to explicitly denote different aggregations for different columns, like here if there was another numeric column named Other.

df = pd.DataFrame({"User": ["user1", "user2", "user2", "user3", "user2", "user1"],               "Amount": [10.0, 5.0, 8.0, 10.5, 7.5, 8.0],               'Other': [1,2,3,4,5,6]})  df.groupby('User').agg({'Amount' : ['sum', 'count'], 'Other':['max', 'std']}) 

Output

      Amount       Other                    sum count   max       std User                               user1   18.0     2     6  3.535534 user2   20.5     3     5  1.527525 user3   10.5     1     4       NaN 
like image 121
Ted Petrou Avatar answered Oct 09 '22 08:10

Ted Petrou