['b','b','b','a','a','c','c']
numpy.unique gives
['a','b','c']
How can I get the original order preserved
['b','a','c']
Great answers. Bonus question. Why do none of these methods work with this dataset? http://www.uploadmb.com/dw.php?id=1364341573 Here's the question numpy sort wierd behavior
unique()
is slow, O(Nlog(N)), but you can do this by following code:
import numpy as np a = np.array(['b','a','b','b','d','a','a','c','c']) _, idx = np.unique(a, return_index=True) print(a[np.sort(idx)])
output:
['b' 'a' 'd' 'c']
Pandas.unique()
is much faster for big array O(N):
import pandas as pd a = np.random.randint(0, 1000, 10000) %timeit np.unique(a) %timeit pd.unique(a) 1000 loops, best of 3: 644 us per loop 10000 loops, best of 3: 144 us per loop
Use the return_index
functionality of np.unique
. That returns the indices at which the elements first occurred in the input. Then argsort
those indices.
>>> u, ind = np.unique(['b','b','b','a','a','c','c'], return_index=True) >>> u[np.argsort(ind)] array(['b', 'a', 'c'], dtype='|S1')
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With