I've been trying to learn a bit of functional programming (with Haskell & Erlang) lately and I'm always amazed at the succinct solutions people can come up with when they can think recursively and know the tools.
I want a function to convert a list of sorted, unique, non-contiguous integers into a list of contiguous lists, i.e:
[1,2,3,6,7,8,10,11]
to:
[[1,2,3], [6,7,8], [10,11]
This was the best I could come up with in Haskell (two functions)::
make_ranges :: [[Int]] -> [Int] -> [[Int]]
make_ranges ranges [] = ranges
make_ranges [] (x:xs)
| null xs = [[x]]
| otherwise = make_ranges [[x]] xs
make_ranges ranges (x:xs)
| (last (last ranges)) + 1 == x =
make_ranges ((init ranges) ++ [(last ranges ++ [x])]) xs
| otherwise = make_ranges (ranges ++ [[x]]) xs
rangify :: [Int] -> [[Int]]
rangify lst = make_ranges [] lst
It might be a bit subjective but I'd be interested to see a better, more elegant, solution to this in either Erlang or Haskell (other functional languages too but I might not understand it.) Otherwise, points for just fixing my crappy beginner's Haskell style!
Most straightforward way in my mind is a foldr:
ranges = foldr step []
where step x [] = [[x]]
step x acc@((y:ys):zs) | y == x + 1 = (x:y:ys):zs
| otherwise = [x]:acc
Or, more concisely:
ranges = foldr step []
where step x ((y:ys):zs) | y == x + 1 = (x:y:ys):zs
step x acc = [x]:acc
But wait, there's more!
abstractRanges f = foldr step []
where step x ((y:ys):zs) | f x y = (x:y:ys):zs
step x acc = [x]:acc
ranges = abstractRanges (\x y -> y == x + 1)
powerRanges = abstractRanges (\x y -> y == x*x) -- mighty morphin
By turning the guard function into a parameter, you can group more interesting things than just +1 sequences.
*Main> powerRanges [1,1,1,2,4,16,3,9,81,5,25]
[[1,1,1],[2,4,16],[3,9,81],[5,25]]
The utility of this particular function is questionable...but fun!
I can't believe I got the shortest solution. I know this is no code golf, but I think it is still quite readable:
import GHC.Exts
range xs = map (map fst) $ groupWith snd $ zipWith (\a b -> (a, a-b)) xs [0..]
or pointfree
range = map (map snd) . groupWith fst . zipWith (\a b -> (b-a, b)) [0..]
BTW, groupWith snd
can be replaced with groupBy (\a b -> snd a == snd b)
if you prefer Data.List
over GHC.Exts
[Edit]
BTW: Is there a nicer way to get rid of the lambda (\a b -> (b-a, b))
than (curry $ (,) <$> ((-) <$> snd <*> fst) <*> snd)
?
[Edit 2]
Yeah, I forgot (,)
is a functor. So here is the obfuscated version:
range = map (map fst) . groupWith snd . (flip $ zipWith $ curry $ fmap <$> (-).fst <*> id) [0..]
Suggestions are welcome...
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With