I need to read a .dat file using a .dct file. Has anyone done that using R?
The format is:
dictionary {
# how many lines per record
_lines(1)
# start defining the first line
_line(1)
# starting column / storage type / variable name / read format / variable label
_column(1) str8 aid %8s "respondent identifier"
...
}
'read formats' are like:
%2f 2 column integer variable
%12s 12 column string variable
%8.2f 8 column number with 2 implied decimal places.
Storage types are described here: http://www.stata.com/help.cgi?datatypes
Other sites used for info:
http://library.columbia.edu/indiv/dssc/technology/stata_write.html
http://www.stata.com/support/faqs/data-management/reading-fixed-format-data/
The .dat file is a bunch of numbers corresponding to the variables specified in the .dct file. (Presumably this is data in fixed width columns).
Here a real example:
.dtc file http://goo.gl/qHZOk
data http://goo.gl/FRGRF
A specific example from the stata site is:
The .dat
file ("test.raw" in this instance)
C1245A101George Costanza
B1223B011Cosmo Kramer
The .dct
file
dictionary using test2.raw {
_column(1) str5 code %5s
_column(2) int call %4f
_column(6) str1 city %1s
_column(7) int neigh %3f
_column(10) str16 name %16s
}
The resulting data file:
+-----------------------------------------------+
| code call city neigh name |
|-----------------------------------------------|
1. | C1245 1245 A 101 George Costanza |
2. | B1223 1223 B 11 Cosmo Kramer |
+-----------------------------------------------+
@thelatemail is spot-on about how to proceed. Here's a small function I threw together to get you started on a more robust solution:
read.dat.dct <- function(dat, dct) {
temp <- readLines(dct)
pattern <- "_column\\(([0-9]+)\\)\\s+([a-z0-9]+)\\s+([a-z0-9_]+)\\s+%([0-9]+).*"
classes <- c("numeric", "character", "character", "numeric")
metadata <- setNames(lapply(1:4, function(x) {
out <- gsub(pattern, paste("\\", x, sep = ""), temp)
out <- gsub("^\\s+|\\s+$|.*\\{|\\}", "", out)
out <- out[out != ""]
class(out) <- classes[x] ; out }),
c("StartPos", "Str", "ColName", "ColWidth"))
read.fwf(dat, widths = metadata[["ColWidth"]],
col.names = metadata[["ColName"]])
}
There is still a lot you would have to do with respect to error checking, generalizing the function, and so on. For example, this function does not work with overlapping columns, as are present in the example that @thelatemail added to your question. Some error checking in the form of "StartPos[n] + ColWidth[n]" should equal "StartPos[n+1]" could be used to stop reading the file if this is not true with an error message. Additionally, the classes of the resulting data can also be extracted from the "metadata" list generated by the function and assigned in read.fwf
using the colClasses
argument.
Here is a dat file and a dct file to demonstrate:
Copy and paste the following two lines into a text editor and save it in your working directory as "test.dat".
C1245A101George Costanza
B1223B011Cosmo Kramer
Copy and paste the following lines into a text editor and save it in your working directory as "test.dct"
dictionary using test.dat {
_column(1) str1 code %1s
_column(2) int call %4f
_column(6) str1 city %1s
_column(7) int neigh %3f
_column(10) str16 name %16s
}
Now, run the function:
read.dat.dct(dat = "test.dat", dct = "test.dct")
# code call city neigh name
# 1 C 1245 A 101 George Costanza
# 2 B 1223 B 11 Cosmo Kramer
read.dat.dct <- function(dat, dct, labels.included = "no") {
temp <- readLines(dct)
temp <- temp[grepl("_column", temp)]
switch(labels.included,
yes = {
pattern <- "_column\\(([0-9]+)\\)\\s+([a-z0-9]+)\\s+(.*)\\s+%([0-9]+)[a-z]\\s+(.*)"
classes <- c("numeric", "character", "character", "numeric", "character")
N <- 5
NAMES <- c("StartPos", "Str", "ColName", "ColWidth", "ColLabel")
},
no = {
pattern <- "_column\\(([0-9]+)\\)\\s+([a-z0-9]+)\\s+(.*)\\s+%([0-9]+).*"
classes <- c("numeric", "character", "character", "numeric")
N <- 4
NAMES <- c("StartPos", "Str", "ColName", "ColWidth")
})
metadata <- setNames(lapply(1:N, function(x) {
out <- gsub(pattern, paste("\\", x, sep = ""), temp)
out <- gsub("^\\s+|\\s+$", "", out)
out <- gsub('\"', "", out, fixed = TRUE)
class(out) <- classes[x] ; out }), NAMES)
metadata[["ColName"]] <- make.names(gsub("\\s", "", metadata[["ColName"]]))
myDF <- read.fwf(dat, widths = metadata[["ColWidth"]],
col.names = metadata[["ColName"]])
if (labels.included == "yes") {
attr(myDF, "col.label") <- metadata[["ColLabel"]]
}
myDF
}
How does it work with your data?
temp <- read.dat.dct(dat = "http://dl.getdropbox.com/u/18116710/21600-0009-Data.txt",
dct = "http://dl.getdropbox.com/u/18116710/21600-0009-Setup.dct",
labels.included = "yes")
dim(temp) # How big is the dataset?
# [1] 180 40
head(temp[, 1:6]) # What do the first few columns & rows look like?
# CASEID AID RRELNO RPREGNO H3PC1.H3PC1 H3PC2.H3PC2
# 1 1 57118381 5 1 1 1
# 2 2 57134970 1 2 1 1
# 3 3 57135078 1 1 1 1
# 4 4 57135078 5 1 1 1
# 5 5 57164981 1 1 7 3
# 6 6 57191909 1 3 1 1
head(attr(temp, "col.label")) # What are the variable labels?
# [1] "CASE IDENTIFICATION NUMBER" "RESPONDENT IDENTIFIER"
# [3] "ROMANTIC RELATIONSHIP NUMBER" "RELATIONSHIP PREGNANCY NUMBER"
# [5] "S23Q1 1 TOLD PARTNER PREGNANT-W3" "S23Q2 MONTHS PREG WHEN TOLD PARTNER-W3"
What about with the original example?
read.dat.dct("test.dat", "test.dct", labels.included = "no")
# code call city neigh name
# 1 C 1245 A 101 George Costanza
# 2 B 1223 B 11 Cosmo Kramer
You may be able to read the dat
files using ?read.fwf
as the .dat
data is essentially just a fixed width data file.
See here - Organizing Messy Notepad data - using the column(X)
values from the .dct
dictionary file as the widths.
The dictionary file could be scraped using readLines
to extract the info, which you could then pass to arguments in the read.fwf
call.
E.g.: the 'variable names' align with the col.names=
argument and,
the 'storage types' align with the colClasses=
argument.
There would be some manual handling in this though.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With