I have some JSON data like this:
{"gid":"111","createHour":"2014-10-20 01:00:00.0","revisions":[{"revId":"2","modDate":"2014-11-20 01:40:37.0"},{"revId":"4","modDate":"2014-11-20 01:40:40.0"}],"comments":[],"replies":[]}
{"gid":"222","createHour":"2014-12-20 01:00:00.0","revisions":[{"revId":"2","modDate":"2014-11-20 01:39:31.0"},{"revId":"4","modDate":"2014-11-20 01:39:34.0"}],"comments":[],"replies":[]}
{"gid":"333","createHour":"2015-01-21 00:00:00.0","revisions":[{"revId":"25","modDate":"2014-11-21 00:34:53.0"},{"revId":"110","modDate":"2014-11-21 00:47:10.0"}],"comments":[{"comId":"4432","content":"How are you?"}],"replies":[{"repId":"4441","content":"I am good."}]}
{"gid":"444","createHour":"2015-09-20 23:00:00.0","revisions":[{"revId":"2","modDate":"2014-11-20 23:23:47.0"}],"comments":[],"replies":[]}
{"gid":"555","createHour":"2016-01-21 01:00:00.0","revisions":[{"revId":"135","modDate":"2014-11-21 01:01:58.0"}],"comments":[],"replies":[]}
{"gid":"666","createHour":"2016-04-23 19:00:00.0","revisions":[{"revId":"136","modDate":"2014-11-23 19:50:51.0"}],"comments":[],"replies":[]}
I can read it in:
val df = sqlContext.read.json("./data/full.json")
I can print the schema with df.printSchema
root
|-- comments: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- comId: string (nullable = true)
| | |-- content: string (nullable = true)
|-- createHour: string (nullable = true)
|-- gid: string (nullable = true)
|-- replies: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- content: string (nullable = true)
| | |-- repId: string (nullable = true)
|-- revisions: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- modDate: string (nullable = true)
| | |-- revId: string (nullable = true)
I can show the data df.show(10,false)
+---------------------+---------------------+---+-------------------+---------------------------------------------------------+
|comments |createHour |gid|replies |revisions |
+---------------------+---------------------+---+-------------------+---------------------------------------------------------+
|[] |2014-10-20 01:00:00.0|111|[] |[[2014-11-20 01:40:37.0,2], [2014-11-20 01:40:40.0,4]] |
|[] |2014-12-20 01:00:00.0|222|[] |[[2014-11-20 01:39:31.0,2], [2014-11-20 01:39:34.0,4]] |
|[[4432,How are you?]]|2015-01-21 00:00:00.0|333|[[I am good.,4441]]|[[2014-11-21 00:34:53.0,25], [2014-11-21 00:47:10.0,110]]|
|[] |2015-09-20 23:00:00.0|444|[] |[[2014-11-20 23:23:47.0,2]] |
|[] |2016-01-21 01:00:00.0|555|[] |[[2014-11-21 01:01:58.0,135]] |
|[] |2016-04-23 19:00:00.0|666|[] |[[2014-11-23 19:50:51.0,136]] |
+---------------------+---------------------+---+-------------------+---------------------------------------------------------+
I can print / read the schema val dfSc = df.schema
as:
StructType(StructField(comments,ArrayType(StructType(StructField(comId,StringType,true), StructField(content,StringType,true)),true),true), StructField(createHour,StringType,true), StructField(gid,StringType,true), StructField(replies,ArrayType(StructType(StructField(content,StringType,true), StructField(repId,StringType,true)),true),true), StructField(revisions,ArrayType(StructType(StructField(modDate,StringType,true), StructField(revId,StringType,true)),true),true))
I can print this out nicer:
println(df.schema.fields.mkString(",\n"))
StructField(comments,ArrayType(StructType(StructField(comId,StringType,true), StructField(content,StringType,true)),true),true),
StructField(createHour,StringType,true),
StructField(gid,StringType,true),
StructField(replies,ArrayType(StructType(StructField(content,StringType,true), StructField(repId,StringType,true)),true),true),
StructField(revisions,ArrayType(StructType(StructField(modDate,StringType,true), StructField(revId,StringType,true)),true),true)
Now if I read in the same file without the comments
and replies
row, with val df2 = sqlContext.read.
json("./data/partialRevOnly.json")
simply deleting those rows, I get something like this with printSchema
:
root
|-- comments: array (nullable = true)
| |-- element: string (containsNull = true)
|-- createHour: string (nullable = true)
|-- gid: string (nullable = true)
|-- replies: array (nullable = true)
| |-- element: string (containsNull = true)
|-- revisions: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- modDate: string (nullable = true)
| | |-- revId: string (nullable = true)
I don't like that, so I use:
val df3 = sqlContext.read.
schema(dfSc).
json("./data/partialRevOnly.json")
where the original schema was dfSc
. So now I get exactly the schema I had before with the removed data:
root
|-- comments: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- comId: string (nullable = true)
| | |-- content: string (nullable = true)
|-- createHour: string (nullable = true)
|-- gid: string (nullable = true)
|-- replies: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- content: string (nullable = true)
| | |-- repId: string (nullable = true)
|-- revisions: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- modDate: string (nullable = true)
| | |-- revId: string (nullable = true)
This is perfect ... well almost. I would like to assign this schema to a variable similar to this:
val textSc = StructField(comments,ArrayType(StructType(StructField(comId,StringType,true), StructField(content,StringType,true)),true),true),
StructField(createHour,StringType,true),
StructField(gid,StringType,true),
StructField(replies,ArrayType(StructType(StructField(content,StringType,true), StructField(repId,StringType,true)),true),true),
StructField(revisions,ArrayType(StructType(StructField(modDate,StringType,true), StructField(revId,StringType,true)),true),true)
OK - This won't work due to double quotes, and 'some other structural' stuff, so try this (with error):
import org.apache.spark.sql.types._
val textSc = StructType(Array(
StructField("comments",ArrayType(StructType(StructField("comId",StringType,true), StructField("content",StringType,true)),true),true),
StructField("createHour",StringType,true),
StructField("gid",StringType,true),
StructField("replies",ArrayType(StructType(StructField("content",StringType,true), StructField("repId",StringType,true)),true),true),
StructField("revisions",ArrayType(StructType(StructField("modDate",StringType,true), StructField("revId",StringType,true)),true),true)
))
Name: Compile Error
Message: <console>:78: error: overloaded method value apply with alternatives:
(fields: Array[org.apache.spark.sql.types.StructField])org.apache.spark.sql.types.StructType <and>
(fields: java.util.List[org.apache.spark.sql.types.StructField])org.apache.spark.sql.types.StructType <and>
(fields: Seq[org.apache.spark.sql.types.StructField])org.apache.spark.sql.types.StructType
cannot be applied to (org.apache.spark.sql.types.StructField, org.apache.spark.sql.types.StructField)
StructField("comments",ArrayType(StructType(StructField("comId",StringType,true), StructField("content",StringType,true)),true),true),
... Without this error (that I cannot figure a quick way around), I would like to then use textSc
in place of dfSc
to read in the JSON data with an imposed schema.
I cannot find a '1-to-1 match' way of getting (via println or ...) the schema with acceptable syntax (sort of like above). I suppose some coding can be done with case matching to iron out the double quotes. However, I'm still unclear what rules are required to get the exact schema out of the test fixture that I can simply re-use in my recurring production (versus test fixture) code. Is there a way to get this schema to print exactly as I would code it?
Note: This includes double quotes and all the proper StructField/Types and so forth to be code-compatible drop in.
As a sidebar, I thought about saving a fully-formed golden JSON file to use at the start of the Spark job, but I would like to eventually use date fields and other more concise types instead of strings at the applicable structural locations.
How can I get the dataFrame information coming out of my test harness (using a fully-formed JSON input row with comments and replies) to a point where I can drop the schema as source-code into production code Scala Spark job?
Note: The best answer is some coding means, but an explanation so I can trudge, plod, toil, wade, plow and slog thru the coding is helpful too. :)
I recently ran into this. I'm using Spark 2.0.2 so I don't know if this solution works with earlier versions.
import scala.util.Try
import org.apache.spark.sql.Dataset
import org.apache.spark.sql.catalyst.parser.LegacyTypeStringParser
import org.apache.spark.sql.types.{DataType, StructType}
/** Produce a Schema string from a Dataset */
def serializeSchema(ds: Dataset[_]): String = ds.schema.json
/** Produce a StructType schema object from a JSON string */
def deserializeSchema(json: String): StructType = {
Try(DataType.fromJson(json)).getOrElse(LegacyTypeStringParser.parse(json)) match {
case t: StructType => t
case _ => throw new RuntimeException(s"Failed parsing StructType: $json")
}
}
Note that the "deserialize" function I just copied from a private function in the Spark StructType object. I don't know how well it will be supported across versions.
Well, the error message should tell you everything you have to know here - StructType
expects a sequence of fields as an argument. So in your case schema should look like this:
StructType(Seq(
StructField("comments", ArrayType(StructType(Seq( // <- Seq[StructField]
StructField("comId", StringType, true),
StructField("content", StringType, true))), true), true),
StructField("createHour", StringType, true),
StructField("gid", StringType, true),
StructField("replies", ArrayType(StructType(Seq( // <- Seq[StructField]
StructField("content", StringType, true),
StructField("repId", StringType, true))), true), true),
StructField("revisions", ArrayType(StructType(Seq( // <- Seq[StructField]
StructField("modDate", StringType, true),
StructField("revId", StringType, true))),true), true)))
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With