I want to determine the column classes of a large data.table.
colClasses <- sapply(DT, FUN=function(x)class(x)[1])
works, but apparently local copies are stored into memory:
> memory.size()
[1] 687.59
> colClasses <- sapply(DT, class)
> memory.size()
[1] 1346.21
A loop seems not possible, because a data.table "with=FALSE" always results in a data.table.
A quick and very dirty method is:
DT1 <- DT[1, ]
colClasses <- sapply(DT1, FUN=function(x)class(x)[1])
What is the most elegent and efficient way to do this?
Have briefly investigated, and it looks like a data.table
bug.
> DT = data.table(a=1:1e6,b=1:1e6,c=1:1e6,d=1:1e6)
> Rprofmem()
> sapply(DT,class)
a b c d
"integer" "integer" "integer" "integer"
> Rprofmem(NULL)
> noquote(readLines("Rprofmem.out"))
[1] 4000040 :"as.list.data.table" "as.list" "lapply" "sapply"
[2] 4000040 :"as.list.data.table" "as.list" "lapply" "sapply"
[3] 4000040 :"as.list.data.table" "as.list" "lapply" "sapply"
[4] 4000040 :"as.list.data.table" "as.list" "lapply" "sapply"
> tracemem(DT)
> sapply(DT,class)
tracemem[000000000431A290 -> 00000000065D70D8]: as.list.data.table as.list lapply sapply
a b c d
"integer" "integer" "integer" "integer"
So, looking at as.list.data.table
:
> data.table:::as.list.data.table
function (x, ...)
{
ans <- unclass(x)
setattr(ans, "row.names", NULL)
setattr(ans, "sorted", NULL)
setattr(ans, ".internal.selfref", NULL)
ans
}
<environment: namespace:data.table>
>
Note the pesky unclass
on the first line. ?unclass
confirms that it takes a deep copy of its argument. From this quick look it doesn't seem like sapply
or lapply
are doing the copying (I didn't think they did since R is good at copy-on-write, and those aren't writing), but rather the as.list
in lapply
(which dispatches to as.list.data.table
).
So, if we avoid the unclass
, it should speed up. Let's try:
> DT = data.table(a=1:1e7,b=1:1e7,c=1:1e7,d=1:1e7)
> system.time(sapply(DT,class))
user system elapsed
0.28 0.06 0.35
> system.time(sapply(DT,class)) # repeat timing a few times and take minimum
user system elapsed
0.17 0.00 0.17
> system.time(sapply(DT,class))
user system elapsed
0.13 0.04 0.18
> system.time(sapply(DT,class))
user system elapsed
0.14 0.03 0.17
> assignInNamespace("as.list.data.table",function(x)x,"data.table")
> data.table:::as.list.data.table
function(x)x
> system.time(sapply(DT,class))
user system elapsed
0 0 0
> system.time(sapply(DT,class))
user system elapsed
0.01 0.00 0.02
> system.time(sapply(DT,class))
user system elapsed
0 0 0
> sapply(DT,class)
a b c d
"integer" "integer" "integer" "integer"
>
So, yes, infinitely better.
I've raised bug report #2000 to remove the as.list.data.table
method, since a data.table
is()
already a list
, too. This might speed up quite a few idioms actually, such as lapply(.SD,...)
. [EDIT: This was fixed in v1.8.1].
Thanks for asking this question!!
I don't see anything wrong in an approach like this
colClasses <- sapply(head(DT1,1), FUN=class)
it is basically your quick'n'dirty solution but perhaps a bit clearer (even if not so much)...
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With