You can extract rows/columns containing missing values from pandas. DataFrame by using the isnull() or isna() method that checks if an element is a missing value.
In order to check null values in Pandas DataFrame, we use isnull() function this function return dataframe of Boolean values which are True for NaN values.
You can use any
axis=1
to check for least one True
per row, then filter with boolean indexing:
null_data = df[df.isnull().any(axis=1)]
df.isnull().any(axis = 1).sum()
this gives you the total number of rows with at least one missing data
If you want to see only the rows that contains the NaN values you could do:
data_frame[data_frame.iloc[:, insert column number here]=='NaN']
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With