I've got a numpy array filled mostly with real numbers, but there is a few nan
values in it as well.
How can I replace the nan
s with averages of columns where they are?
In NumPy, to replace missing values NaN ( np. nan ) in ndarray with other numbers, use np. nan_to_num() or np. isnan() .
However, np. average doesn't ignore NaN like np.
No loops required:
print(a) [[ 0.93230948 nan 0.47773439 0.76998063] [ 0.94460779 0.87882456 0.79615838 0.56282885] [ 0.94272934 0.48615268 0.06196785 nan] [ 0.64940216 0.74414127 nan nan]] #Obtain mean of columns as you need, nanmean is convenient. col_mean = np.nanmean(a, axis=0) print(col_mean) [ 0.86726219 0.7030395 0.44528687 0.66640474] #Find indices that you need to replace inds = np.where(np.isnan(a)) #Place column means in the indices. Align the arrays using take a[inds] = np.take(col_mean, inds[1]) print(a) [[ 0.93230948 0.7030395 0.47773439 0.76998063] [ 0.94460779 0.87882456 0.79615838 0.56282885] [ 0.94272934 0.48615268 0.06196785 0.66640474] [ 0.64940216 0.74414127 0.44528687 0.66640474]]
The standard way to do this using only numpy would be to use the masked array module.
Scipy is a pretty heavy package which relies on external libraries, so it's worth having a numpy-only method. This borrows from @DonaldHobson's answer.
Edit: np.nanmean
is now a numpy function. However, it doesn't handle all-nan columns...
Suppose you have an array a
:
>>> a
array([[ 0., nan, 10., nan],
[ 1., 6., nan, nan],
[ 2., 7., 12., nan],
[ 3., 8., nan, nan],
[ nan, 9., 14., nan]])
>>> import numpy.ma as ma
>>> np.where(np.isnan(a), ma.array(a, mask=np.isnan(a)).mean(axis=0), a)
array([[ 0. , 7.5, 10. , 0. ],
[ 1. , 6. , 12. , 0. ],
[ 2. , 7. , 12. , 0. ],
[ 3. , 8. , 12. , 0. ],
[ 1.5, 9. , 14. , 0. ]])
Note that the masked array's mean does not need to be the same shape as a
, because we're taking advantage of the implicit broadcasting over rows.
Also note how the all-nan column is nicely handled. The mean is zero since you're taking the mean of zero elements. The method using nanmean
doesn't handle all-nan columns:
>>> col_mean = np.nanmean(a, axis=0)
/home/praveen/.virtualenvs/numpy3-mkl/lib/python3.4/site-packages/numpy/lib/nanfunctions.py:675: RuntimeWarning: Mean of empty slice
warnings.warn("Mean of empty slice", RuntimeWarning)
>>> inds = np.where(np.isnan(a))
>>> a[inds] = np.take(col_mean, inds[1])
>>> a
array([[ 0. , 7.5, 10. , nan],
[ 1. , 6. , 12. , nan],
[ 2. , 7. , 12. , nan],
[ 3. , 8. , 12. , nan],
[ 1.5, 9. , 14. , nan]])
Explanation
Converting a
into a masked array gives you
>>> ma.array(a, mask=np.isnan(a))
masked_array(data =
[[0.0 -- 10.0 --]
[1.0 6.0 -- --]
[2.0 7.0 12.0 --]
[3.0 8.0 -- --]
[-- 9.0 14.0 --]],
mask =
[[False True False True]
[False False True True]
[False False False True]
[False False True True]
[ True False False True]],
fill_value = 1e+20)
And taking the mean over columns gives you the correct answer, normalizing only over the non-masked values:
>>> ma.array(a, mask=np.isnan(a)).mean(axis=0)
masked_array(data = [1.5 7.5 12.0 --],
mask = [False False False True],
fill_value = 1e+20)
Further, note how the mask nicely handles the column which is all-nan!
Finally, np.where
does the job of replacement.
Row-wise mean
To replace nan
values with row-wise mean instead of column-wise mean requires a tiny change for broadcasting to take effect nicely:
>>> a
array([[ 0., 1., 2., 3., nan],
[ nan, 6., 7., 8., 9.],
[ 10., nan, 12., nan, 14.],
[ nan, nan, nan, nan, nan]])
>>> np.where(np.isnan(a), ma.array(a, mask=np.isnan(a)).mean(axis=1), a)
ValueError: operands could not be broadcast together with shapes (4,5) (4,) (4,5)
>>> np.where(np.isnan(a), ma.array(a, mask=np.isnan(a)).mean(axis=1)[:, np.newaxis], a)
array([[ 0. , 1. , 2. , 3. , 1.5],
[ 7.5, 6. , 7. , 8. , 9. ],
[ 10. , 12. , 12. , 12. , 14. ],
[ 0. , 0. , 0. , 0. , 0. ]])
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With