I am able to read and slice pandas dataframe using python datetime objects, however I am forced to use only existing dates in index. For example, this works:
>>> data <class 'pandas.core.frame.DataFrame'> DatetimeIndex: 252 entries, 2010-12-31 00:00:00 to 2010-04-01 00:00:00 Data columns: Adj Close 252 non-null values dtypes: float64(1) >>> st = datetime.datetime(2010, 12, 31, 0, 0) >>> en = datetime.datetime(2010, 12, 28, 0, 0) >>> data[st:en] Adj Close Date 2010-12-31 593.97 2010-12-30 598.86 2010-12-29 601.00 2010-12-28 598.92
However if I use a start or end date that is not present in the DF, I get python KeyError.
My Question : How do I query the dataframe object for a date range; even when the start and end dates are not present in the DataFrame. Does pandas allow for range based slicing?
I am using pandas version 0.10.1
strftime() to Filter DataFrame Rows on Dates. You can use df[df['Date']. dt. strftime('%Y-%m')=='2021-11'] method to filter by month.
There are two possible solutions: Use a boolean mask, then use df. loc[mask] Set the date column as a DatetimeIndex, then use df[start_date : end_date]
Use searchsorted
to find the nearest times first, and then use it to slice.
In [15]: df = pd.DataFrame([1, 2, 3], index=[dt.datetime(2013, 1, 1), dt.datetime(2013, 1, 3), dt.datetime(2013, 1, 5)]) In [16]: df Out[16]: 0 2013-01-01 1 2013-01-03 2 2013-01-05 3 In [22]: start = df.index.searchsorted(dt.datetime(2013, 1, 2)) In [23]: end = df.index.searchsorted(dt.datetime(2013, 1, 4)) In [24]: df.iloc[start:end] Out[24]: 0 2013-01-03 2
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With