I have implemented a function to construct a distance matrix using the jaccard similarity:
import pandas as pd
entries = [
{'id':'1', 'category1':'100', 'category2': '0', 'category3':'100'},
{'id':'2', 'category1':'100', 'category2': '0', 'category3':'100'},
{'id':'3', 'category1':'0', 'category2': '100', 'category3':'100'},
{'id':'4', 'category1':'100', 'category2': '100', 'category3':'100'},
{'id':'5', 'category1':'100', 'category2': '0', 'category3':'100'}
]
df = pd.DataFrame(entries)
and the distance matrix with scipy
from scipy.spatial.distance import squareform
from scipy.spatial.distance import pdist, jaccard
res = pdist(df[['category1','category2','category3']], 'jaccard')
squareform(res)
distance = pd.DataFrame(squareform(res), index=df.index, columns= df.index)
The problem is that my result looks like this which seems to be false:
What am i missing? The similarity of 0 and 1 have to be maximum for example and the other values seem wrong too
A similar statistic, the Jaccard distance, is a measure of how dissimilar two sets are. It is the complement of the Jaccard index and can be found by subtracting the Jaccard Index from 100%. For the above example, the Jaccard distance is 1 – 33.33% = 66.67%.
Jaccard distance is commonly used to calculate an n × n matrix for clustering and multidimensional scaling of n sample sets. This distance is a metric on the collection of all finite sets.
Looking at the docs, the implementation of jaccard
in scipy.spatial.distance
is jaccard dissimilarity, not similarity. This is the usual way in which distance is computed when using jaccard as a metric. The reason for this is because in order to be a metric, the distance between the identical points must be zero.
In your code, the dissimilarity between 0 and 1 should be minimized, which it is. The other values look correct in the context of dissimilarity as well.
If you want similarity instead of dissimilarity, just subtract the dissimilarity from 1.
res = 1 - pdist(df[['category1','category2','category3']], 'jaccard')
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With