I have the following pyqtmain.py:
#!/usr/bin/python3
import sys
from PyQt4.QtCore import *
from PyQt4.QtGui import *
from pyqtMeasThread import *
class MainWindow(QMainWindow):
def __init__(self, parent=None):
self.qt_app = QApplication(sys.argv)
QMainWindow.__init__(self, parent)
buttonWidget = QWidget()
rsltLabel = QLabel("Result:")
self.rsltFiled = QLineEdit()
self.buttonStart = QPushButton("Start")
verticalLayout = QVBoxLayout(buttonWidget)
verticalLayout.addWidget(rsltLabel)
verticalLayout.addWidget(self.rsltFiled)
verticalLayout.addWidget(self.buttonStart)
butDW = QDockWidget("Control", self)
butDW.setWidget(buttonWidget)
self.addDockWidget(Qt.LeftDockWidgetArea, butDW)
self.mthread = QThread() # New thread to run the Measurement Engine
self.worker = MeasurementEngine() # Measurement Engine Object
self.worker.moveToThread(self.mthread)
self.mthread.finished.connect(self.worker.deleteLater) # Cleanup after thread finished
self.worker.measure_msg.connect(self.showRslt)
self.buttonStart.clicked.connect(self.worker.run)
# Everything configured, start the worker thread.
self.mthread.start()
def run(self):
""" Show the window and start the event loop """
self.show()
self.qt_app.exec_() # Start event loop
@pyqtSlot(str)
def showRslt(self, mystr):
self.rsltFiled.setText(mystr)
def main():
win = MainWindow()
win.run()
if __name__ == '__main__':
main()
And another thread script performing the actual measurement:
from PyQt4.QtCore import *
import time
class MeasurementEngine(QObject):
measure_msg = pyqtSignal(str)
def __init__(self):
QObject.__init__(self) # Don't forget to call base class constructor
@pyqtSlot()
def run(self):
self.measure_msg.emit('phase1')
time.sleep(2) # here I would like to make it as an interrupt
self.measure_msg.emit('phase2')
What this code does now is that after the Start button is pressed, the function run in the thread will be executed. However, actually in the function run, there are two phases of the measurement. Right now I used an time delay.
But what I would like to implement actually is that after the 'phase1' measurement is done. A message box will be popped up, and at the same time, the thread will be paused/held. Until the user closed the message box, then the thread function will be resumed.
You can stop the thread by calling exit() or quit() .
While some parts of the Qt framework are thread safe, much of it is not. The Qt C++ documentation provides a good overview of which classes are reentrant (can be used to instantiate objects in multiple threads).
Instantiating QThread provides a parallel event loop. An event loop allows objects owned by the thread to receive signals on their slots, and these slots will be executed within the thread. On the other hand, subclassing QThread allows running parallel code without an event loop.
A QThread object manages one thread of control within the program. QThreads begin executing in run() . By default, run() starts the event loop by calling exec() and runs a Qt event loop inside the thread. You can use worker objects by moving them to the thread using moveToThread() .
If you’re doing multithreaded programming with PyQt, then you might need to establish communication between your application’s main thread and your worker threads. This allows you to get feedback on the progress of worker threads and update the GUI accordingly, send data to your threads, allow the users to interrupt the execution, and so on.
Worker threads are secondary threads of execution that you can use to offload long-running tasks from the main thread and prevent GUI freezing. You can create worker threads using QThread. Each worker thread can have its own event loop and support PyQt’s signals and slots mechanism to communicate with the main thread.
PyQt4 has a unique signal and slot mechanism to deal with events. Signals and slots are used for communication between objects. A signal is emitted when a particular event occurs. A slot can be any Python callable. A slot is called when a signal connected to it is emitted. PyQt4.5 introduced a new style API for working with signals and slots.
Each worker thread can have its own event loop and support PyQt’s signals and slots mechanism to communicate with the main thread. If you create an object from any class that inherits from QObject in a particular thread, then that object is said to belong to, or have an affinity to, that thread.
Use a QWaitCondition
from the QtCore
module. Using a mutex lock, you set the background thread to wait/sleep until the foreground thread wakes it back up. Then it will continue doing its work from there.
#!/usr/bin/python3
import sys
from PyQt4.QtCore import *
from PyQt4.QtGui import *
from pyqtMeasThread import *
class MainWindow(QMainWindow):
def __init__(self, parent=None):
self.qt_app = QApplication(sys.argv)
QMainWindow.__init__(self, parent)
buttonWidget = QWidget()
rsltLabel = QLabel("Result:")
self.rsltFiled = QLineEdit()
self.buttonStart = QPushButton("Start")
verticalLayout = QVBoxLayout(buttonWidget)
verticalLayout.addWidget(rsltLabel)
verticalLayout.addWidget(self.rsltFiled)
verticalLayout.addWidget(self.buttonStart)
butDW = QDockWidget("Control", self)
butDW.setWidget(buttonWidget)
self.addDockWidget(Qt.LeftDockWidgetArea, butDW)
self.mutex = QMutex()
self.cond = QWaitCondition()
self.mthread = QThread() # New thread to run the Measurement Engine
self.worker = MeasurementEngine(self.mutex, self.cond) # Measurement Engine Object
self.worker.moveToThread(self.mthread)
self.mthread.finished.connect(self.worker.deleteLater) # Cleanup after thread finished
self.worker.measure_msg.connect(self.showRslt)
self.buttonStart.clicked.connect(self.worker.run)
# Everything configured, start the worker thread.
self.mthread.start()
def run(self):
""" Show the window and start the event loop """
self.show()
self.qt_app.exec_() # Start event loop
# since this is a slot, it will always get run in the event loop in the main thread
@pyqtSlot(str)
def showRslt(self, mystr):
self.rsltFiled.setText(mystr)
msgBox = QMessageBox(parent=self)
msgBox.setText("Close this dialog to continue to Phase 2.")
msgBox.exec_()
self.cond.wakeAll()
def main():
win = MainWindow()
win.run()
if __name__ == '__main__':
main()
And:
from PyQt4.QtCore import *
import time
class MeasurementEngine(QObject):
measure_msg = pyqtSignal(str)
def __init__(self, mutex, cond):
QObject.__init__(self) # Don't forget to call base class constructor
self.mtx = mutex
self.cond = cond
@pyqtSlot()
def run(self):
# NOTE: do work for phase 1 here
self.measure_msg.emit('phase1')
self.mtx.lock()
try:
self.cond.wait(self.mtx)
# NOTE: do work for phase 2 here
self.measure_msg.emit('phase2')
finally:
self.mtx.unlock()
Your timing is a little bit off in all this though. You create the app and start the thread before you even show your window. Thus, the message box will pop up before the main window even pops up. To get the right sequence of events, you should start your thread as part of the run
method of your MainWindow, after you have already made the main window visible. If you want the wait condition to be separate from the setting of the messages, you may need a separate signal and slot to deal with that.
You can't display a QDialog
from within a QThread
. All GUI related stuff must be done in the GUI thread (the one that created the QApplication
object). What you could do is to use 2 QThread
:
finished
signal of this QThread
to a slot in the QMainWindow
that will display the popup (using QDialog.exec_()
so it will be modal).QThread
after the popup shown here above has been closed.If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With