Assuming I have the following dataframe:
a b c Sce1 Sce2 Sce3 Sce4 Sce5 Sc6
Animal Ground Dog 0.0 0.9 0.5 0.0 0.3 0.4
Animal Ground Cat 0.6 0.5 0.3 0.5 1.0 0.2
Animal Air Eagle 1.0 0.1 0.1 0.6 0.9 0.1
Animal Air Owl 0.3 0.1 0.5 0.3 0.5 0.9
Object Metal Car 0.3 0.3 0.8 0.6 0.5 0.6
Object Metal Bike 0.5 0.1 0.4 0.7 0.4 0.2
Object Wood Chair 0.9 0.6 0.1 0.9 0.2 0.8
Object Wood Table 0.9 0.6 0.6 0.1 0.9 0.7
I want to create a MultiIndex, which will contain the sum of each lvl. The output will look like this:
a b c Sce1 Sce2 Sce3 Sce4 Sce5 Sce6
Animal 1.9 1.6 1.4 1.3 2.7 1.6
Ground 0.6 1.4 0.8 0.5 1.3 0.6
Dog 0.0 0.9 0.5 0.0 0.3 0.4
Cat 0.6 0.5 0.3 0.5 1.0 0.2
Air 1.3 0.2 0.7 0.8 1.4 1.0
Eagle 1.0 0.1 0.1 0.6 0.9 0.1
Owl 0.3 0.1 0.5 0.3 0.5 0.9
Object 2.6 1.6 1.8 2.3 2.0 2.3
Metal 0.8 0.3 1.1 1.3 0.9 0.8
Car 0.3 0.3 0.8 0.6 0.5 0.6
Bike 0.5 0.1 0.4 0.7 0.4 0.2
Wood 1.8 1.3 0.6 1.0 1.1 1.5
Chair 0.9 0.6 0.1 0.9 0.2 0.8
Table 0.9 0.6 0.6 0.1 0.9 0.7
At the moment I am using a loop to create three different dataframes on each level and then manipulate them on excel, as below. So I wanted to take this calculation in python if possible.
for i in range range(0,3):
df = df.groupby(list(df.columns)[0:lvl], as_index=False).sum()
return df
Many thanks in advance.
you need to do two group by
to get subtotals at every level of aggregation. Then add those back in to the initial DF. Here's a related question.
With some liberal use of MAGIC
pd.concat([
df.assign(
**{x: 'Total' for x in 'abc'[i:]}
).groupby(list('abc')).sum() for i in range(4)
]).sort_index()
Sce1 Sce2 Sce3 Sce4 Sce5 Sc6
a b c
Animal Air Eagle 1.0 0.1 0.1 0.6 0.9 0.1
Owl 0.3 0.1 0.5 0.3 0.5 0.9
Total 1.3 0.2 0.6 0.9 1.4 1.0
Ground Cat 0.6 0.5 0.3 0.5 1.0 0.2
Dog 0.0 0.9 0.5 0.0 0.3 0.4
Total 0.6 1.4 0.8 0.5 1.3 0.6
Total Total 1.9 1.6 1.4 1.4 2.7 1.6
Object Metal Bike 0.5 0.1 0.4 0.7 0.4 0.2
Car 0.3 0.3 0.8 0.6 0.5 0.6
Total 0.8 0.4 1.2 1.3 0.9 0.8
Total Total 2.6 1.6 1.9 2.3 2.0 2.3
Wood Chair 0.9 0.6 0.1 0.9 0.2 0.8
Table 0.9 0.6 0.6 0.1 0.9 0.7
Total 1.8 1.2 0.7 1.0 1.1 1.5
Total Total Total 4.5 3.2 3.3 3.7 4.7 3.9
I can get exactly what you asked for with
pd.concat([
df.assign(
**{x: '' for x in 'abc'[i:]}
).groupby(list('abc')).sum() for i in range(1, 4)
]).sort_index()
Sce1 Sce2 Sce3 Sce4 Sce5 Sc6
a b c
Animal 1.9 1.6 1.4 1.4 2.7 1.6
Air 1.3 0.2 0.6 0.9 1.4 1.0
Eagle 1.0 0.1 0.1 0.6 0.9 0.1
Owl 0.3 0.1 0.5 0.3 0.5 0.9
Ground 0.6 1.4 0.8 0.5 1.3 0.6
Cat 0.6 0.5 0.3 0.5 1.0 0.2
Dog 0.0 0.9 0.5 0.0 0.3 0.4
Object 2.6 1.6 1.9 2.3 2.0 2.3
Metal 0.8 0.4 1.2 1.3 0.9 0.8
Bike 0.5 0.1 0.4 0.7 0.4 0.2
Car 0.3 0.3 0.8 0.6 0.5 0.6
Wood 1.8 1.2 0.7 1.0 1.1 1.5
Chair 0.9 0.6 0.1 0.9 0.2 0.8
Table 0.9 0.6 0.6 0.1 0.9 0.7
As for the how! I'll leave that as an exercise for the reader.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With