I read a csv file into pandas dataframe df
and I get the following:
df.columns
Index([u'TDate', u'Hour', u'SPP'], dtype='object')
>>> type(df['TDate'][0])
<class 'pandas.tslib.Timestamp'>
type(df['Hour'][0])
<type 'numpy.int64'>
>>> type(df['TradingDate'])
<class 'pandas.core.series.Series'>
>>> type(df['Hour'])
<class 'pandas.core.series.Series'>
Both the Hour
and TDate
columns have 100 elements. I want to add the corresponding elements of Hour to TDate.
I tried the following:
import pandas as pd
from datetime import date, timedelta as td
z3 = pd.DatetimeIndex(df['TDate']).to_pydatetime() + td(hours = df['Hour'])
But I get error as it seems td doesn't take array as argument. How do I add each element of Hour
to corresponding element of TDate
.
Use the timedelta() class from the datetime module to add hours to datetime, e.g. result = dt + timedelta(hours=10) . The timedelta class can be passed a hours argument and adds the specified number of hours to the datetime.
Example 1: Timestamps with to_datetime. Here we are converting the CSV file into a dataframe using pandas. DataFrame() method after reading the contents of the file using pandas. read_csv(), the timestamps column from the data Dataframe is given as an argument in the to_datetime() for it to be converted into DateTime.
I think you can add to column TDate
column Hour
converted to_timedelta
with unit='h'
:
df = pd.DataFrame({'TDate':['2005-01-03','2005-01-04','2005-01-05'],
'Hour':[4,5,6]})
df['TDate'] = pd.to_datetime(df.TDate)
print (df)
Hour TDate
0 4 2005-01-03
1 5 2005-01-04
2 6 2005-01-05
df['TDate'] += pd.to_timedelta(df.Hour, unit='h')
print (df)
Hour TDate
0 4 2005-01-03 04:00:00
1 5 2005-01-04 05:00:00
2 6 2005-01-05 06:00:00
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With