I am new to hadoop mapreduce
I have input text file where data has been stored as follow. Here are only a few tuples (data.txt)
{"author":"Sharīf Qāsim","book":"al- Rabīʻ al-manshūd"}
{"author":"Nāṣir Nimrī","book":"Adīb ʻAbbāsī"}
{"author":"Muẓaffar ʻAbd al-Majīd Kammūnah","book":"Asmāʼ Allāh al-ḥusná al-wāridah fī muḥkam kitābih"}
{"author":"Ḥasan Muṣṭafá Aḥmad","book":"al- Jabhah al-sharqīyah wa-maʻārikuhā fī ḥarb Ramaḍān"}
{"author":"Rafīqah Salīm Ḥammūd","book":"Taʻlīm fī al-Baḥrayn"}
This is my java file that I am supposed to write my code in (CombineBooks.java)
package org.hwone;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.util.GenericOptionsParser;
//TODO import necessary components
/*
* Modify this file to combine books from the same other into
* single JSON object.
* i.e. {"author": "Tobias Wells", "books": [{"book":"A die in the country"},{"book": "Dinky died"}]}
* Beaware that, this may work on anynumber of nodes!
*
*/
public class CombineBooks {
//TODO define variables and implement necessary components
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args)
.getRemainingArgs();
if (otherArgs.length != 2) {
System.err.println("Usage: CombineBooks <in> <out>");
System.exit(2);
}
//TODO implement CombineBooks
Job job = new Job(conf, "CombineBooks");
//TODO implement CombineBooks
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
My task is to create a Hadoop program in “CombineBooks.java” returned in the “question-2” directory. The program should do the following: Given the input author-book tuples, map-reduce program should procude a JSON object which contains all the books from same author in a JSON array, i.e.
{"author": "Tobias Wells", "books":[{"book":"A die in the country"},{"book": "Dinky died"}]}
Any idea how it can be done ?
First, the JSON objects you are trying to work with are not available for you. To solve this:
Next, the first line of your code makes a package "org.json", which is incorrect, you shold create a separate package, for instance "my.books".
Third, using combiner here is useless.
Here's the code I ended up with, it works and solves your problem:
package my.books;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
import org.json.*;
import javax.security.auth.callback.TextInputCallback;
public class CombineBooks {
public static class Map extends Mapper<LongWritable, Text, Text, Text>{
public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException{
String author;
String book;
String line = value.toString();
String[] tuple = line.split("\\n");
try{
for(int i=0;i<tuple.length; i++){
JSONObject obj = new JSONObject(tuple[i]);
author = obj.getString("author");
book = obj.getString("book");
context.write(new Text(author), new Text(book));
}
}catch(JSONException e){
e.printStackTrace();
}
}
}
public static class Reduce extends Reducer<Text,Text,NullWritable,Text>{
public void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException{
try{
JSONObject obj = new JSONObject();
JSONArray ja = new JSONArray();
for(Text val : values){
JSONObject jo = new JSONObject().put("book", val.toString());
ja.put(jo);
}
obj.put("books", ja);
obj.put("author", key.toString());
context.write(NullWritable.get(), new Text(obj.toString()));
}catch(JSONException e){
e.printStackTrace();
}
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
if (args.length != 2) {
System.err.println("Usage: CombineBooks <in> <out>");
System.exit(2);
}
Job job = new Job(conf, "CombineBooks");
job.setJarByClass(CombineBooks.class);
job.setMapperClass(Map.class);
job.setReducerClass(Reduce.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
job.setOutputKeyClass(NullWritable.class);
job.setOutputValueClass(Text.class);
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
Here's the folder structure of my project:
src
src/my
src/my/books
src/my/books/CombineBooks.java
src/org
src/org/json
src/org/json/zip
src/org/json/zip/BitReader.java
...
src/org/json/zip/None.java
src/org/json/JSONStringer.java
src/org/json/JSONML.java
...
src/org/json/JSONException.java
Here's the input
[localhost:CombineBooks]$ hdfs dfs -cat /example.txt
{"author":"author1", "book":"book1"}
{"author":"author1", "book":"book2"}
{"author":"author1", "book":"book3"}
{"author":"author2", "book":"book4"}
{"author":"author2", "book":"book5"}
{"author":"author3", "book":"book6"}
The command to run:
hadoop jar ./bookparse.jar my.books.CombineBooks /example.txt /test_output
Here's the output:
[pivhdsne:CombineBooks]$ hdfs dfs -cat /test_output/part-r-00000
{"books":[{"book":"book3"},{"book":"book2"},{"book":"book1"}],"author":"author1"}
{"books":[{"book":"book5"},{"book":"book4"}],"author":"author2"}
{"books":[{"book":"book6"}],"author":"author3"}
You can use on of the three options to put the org.json.*
classes into your cluster:
org.json.*
classes into your jar file (can easily be done using GUI IDE). This is the option I used in my answerorg.json.*
classes on each of the cluster nodes into one of the CLASSPATH directories (see yarn.application.classpath)org.json.*
into HDFS (hdfs dfs -put <org.json jar> <hdfs path>
) and use job.addFileToClassPath
call for this jar file to be available for all of the tasks executing your job on the cluster. In my answer you should add job.addFileToClassPath(new Path("<jar_file_on_hdfs_location>"));
to the main
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With