I love how easy dplyr
and tidyr
have made it to create a single summary table with multiple predictor and outcome variables. One thing that got me stumped was the final step of preserving/defining the order of the predictor variables, and their factor levels, in the output table.
I've come up with a solution of sorts (below), which involves using mutate
to manually make a factor variable that combines both the predictor and predictor value (eg. "gender_female") with levels in the desired output order. But my solution is a bit long winded if there are many variables, and I wonder if there is a better way?
library(dplyr)
library(tidyr)
levels_eth <- c("Maori", "Pacific", "Asian", "Other", "European", "Unknown")
levels_gnd <- c("Female", "Male", "Unknown")
set.seed(1234)
dat <- data.frame(
gender = factor(sample(levels_gnd, 100, replace = TRUE), levels = levels_gnd),
ethnicity = factor(sample(levels_eth, 100, replace = TRUE), levels = levels_eth),
outcome1 = sample(c(TRUE, FALSE), 100, replace = TRUE),
outcome2 = sample(c(TRUE, FALSE), 100, replace = TRUE)
)
dat %>%
gather(key = outcome, value = outcome_value, contains("outcome")) %>%
gather(key = predictor, value = pred_value, gender, ethnicity) %>%
# Statement below creates variable for ordering output
mutate(
pred_ord = factor(interaction(predictor, addNA(pred_value), sep = "_"),
levels = c(paste("gender", levels(addNA(dat$gender)), sep = "_"),
paste("ethnicity", levels(addNA(dat$ethnicity)), sep = "_")))
) %>%
group_by(pred_ord, outcome) %>%
summarise(n = sum(outcome_value, na.rm = TRUE)) %>%
ungroup() %>%
spread(key = outcome, value = n) %>%
separate(pred_ord, c("Predictor", "Pred_value"))
Source: local data frame [9 x 4]
Predictor Pred_value outcome1 outcome2
(chr) (chr) (int) (int)
1 gender Female 25 27
2 gender Male 11 10
3 gender Unknown 12 15
4 ethnicity Maori 10 9
5 ethnicity Pacific 7 7
6 ethnicity Asian 6 12
7 ethnicity Other 10 9
8 ethnicity European 5 4
9 ethnicity Unknown 10 11
Warning message:
attributes are not identical across measure variables; they will be dropped
The table above is correct in that neither the Predictor nor Predictor values are resorted alphabetically.
EDIT
As requested, this is what is produced if the default ordering (alphabetical) is used. It makes sense in that when the factors are combined they are converted to a character variable and all attributes are dropped.
dat %>%
gather(key = outcome, value = outcome_value, contains("outcome")) %>%
gather(key = predictor, value = pred_value, gender, ethnicity) %>%
group_by(predictor, pred_value, outcome) %>%
summarise(n = sum(outcome_value, na.rm = TRUE)) %>%
spread(key = outcome, value = n)
Source: local data frame [9 x 4]
predictor pred_value outcome1 outcome2
(chr) (chr) (int) (int)
1 ethnicity Asian 6 12
2 ethnicity European 5 4
3 ethnicity Maori 10 9
4 ethnicity Other 10 9
5 ethnicity Pacific 7 7
6 ethnicity Unknown 10 11
7 gender Female 25 27
8 gender Male 11 10
9 gender Unknown 12 15
Warning message:
attributes are not identical across measure variables; they will be dropped
dplyr is a package for making tabular data wrangling easier by using a limited set of functions that can be combined to extract and summarize insights from your data. It pairs nicely with tidyr which enables you to swiftly convert between different data formats (long vs. wide) for plotting and analysis.
The easiest way to create summary tables in R is to use the describe() and describeBy() functions from the psych library.
Summarise multiple variables The functions summarise_all() , summarise_at() and summarise_if() can be used to summarise multiple columns at once. The simplified formats are as follow: summarise_all(. tbl, .
If you want your data to be factors arranged as such, you'll need to convert them back to factors, as gather
coerces to character (which it warns you about). You can use gather
's factor_key
parameter to take care of predictor
, but you'll need to assemble levels for pred_value
as it now combines two factors from the original. Simplifying a bit:
library(tidyr)
library(dplyr)
dat %>%
gather(key = predictor, value = pred_value, gender, ethnicity, factor_key = TRUE) %>%
group_by(predictor, pred_value) %>%
summarise_all(sum) %>%
ungroup() %>%
mutate(pred_value = factor(pred_value, levels = unique(c(levels_eth, levels_gnd),
fromLast = TRUE))) %>%
arrange(predictor, pred_value)
## # A tibble: 9 × 4
## predictor pred_value outcome1 outcome2
## <fctr> <fctr> <int> <int>
## 1 gender Female 25 27
## 2 gender Male 11 10
## 3 gender Unknown 12 15
## 4 ethnicity Maori 10 9
## 5 ethnicity Pacific 7 7
## 6 ethnicity Asian 6 12
## 7 ethnicity Other 10 9
## 8 ethnicity European 5 4
## 9 ethnicity Unknown 10 11
Note that you'll need to use unique
with fromLast = TRUE
to arrange the duplicate "Unknown" values into a single occurrence in the right place; union
will put it earlier.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With