Does the following code represent the preferred procedure for traversing the rows of an R data.table
and passing the values found at each row to a function? Or is there a more performant way to do this?
library(data.table)
set.seed(2)
n <- 100
b <- c(0.5, 1.5, -1)
phi <- 0.8
X <- cbind(1, matrix(rnorm(n*2, 0, 1), ncol = 2))
y <- X %*% matrix(b, ncol = 1) + rnorm(n, 0, phi)
d <- data.table(y, X)
setnames(d, c("y", "x0", "x1", "x2"))
logpost <- function(d, b1, b2, b3, phi, mub = 1, taub = 10, a = 0.5, z = 0.7){
N <- nrow(d)
mu <- b1 + b2 * d$x1 + b3 * d$x2
lp <- -N * log(phi) -
(1/(2*phi^2)) * sum( (d$y-mu)^2 ) -
(1/(2*taub^2))*( (b1-mub)^2 + (b2-mub)^2 + (b3-mub)^2 ) -
(a+1)*log(phi) - (z/phi)
lp
}
nn <- 21
grid <- data.table(
expand.grid(b1 = seq(0, 1, len = nn),
b2 = seq(1, 2, len = nn),
b3 = seq(-1.5, -0.5, len = nn),
phi = seq(0.4, 1.2, len = nn)))
grid[, id := 1:.N]
setkey(grid, id)
wraplogpost <- function(dd){
logpost(d, dd$b1, dd$b2, dd$b3, dd$phi)
}
start <- Sys.time()
grid[, lp := wraplogpost(.SD), by = seq_len(nrow(grid))]
difftime(Sys.time(), start)
# Time difference of 2.081544 secs
Edit: display first few records
> head(grid)
b1 b2 b3 phi id lp
1: 0.00 1 -1.5 0.4 1 -398.7618
2: 0.05 1 -1.5 0.4 2 -380.3674
3: 0.10 1 -1.5 0.4 3 -363.5356
4: 0.15 1 -1.5 0.4 4 -348.2663
5: 0.20 1 -1.5 0.4 5 -334.5595
6: 0.25 1 -1.5 0.4 6 -322.4152
I have tried using set
but that approach seems inferior
start <- Sys.time()
grid[, lp := NA_real_]
for(i in 1:nrow(grid)){
llpp <- wraplogpost(grid[i])
set(grid, i, "lp", llpp)
}
difftime(Sys.time(), start)
# Time difference of 21.71291 secs
Edit: display first few records
> head(grid)
b1 b2 b3 phi id lp
1: 0.00 1 -1.5 0.4 1 -398.7618
2: 0.05 1 -1.5 0.4 2 -380.3674
3: 0.10 1 -1.5 0.4 3 -363.5356
4: 0.15 1 -1.5 0.4 4 -348.2663
5: 0.20 1 -1.5 0.4 5 -334.5595
6: 0.25 1 -1.5 0.4 6 -322.4152
Suggestions or pointers to the relevant docs would be appreciated.
Edit: per comments:
start <- Sys.time()
grid[, lp := wraplogpost(.SD), by = .I]
difftime(Sys.time(), start)
Warning messages:
1: In b2 * d$x1 :
longer object length is not a multiple of shorter object length
2: In b3 * d$x2 :
longer object length is not a multiple of shorter object length
3: In d$y - mu :
longer object length is not a multiple of shorter object length
> difftime(Sys.time(), start)
Time difference of 0.01199317 secs
>
> head(grid)
b1 b2 b3 phi id lp
1: 0.00 1 -1.5 0.4 1 -620977.2
2: 0.05 1 -1.5 0.4 2 -620977.2
3: 0.10 1 -1.5 0.4 3 -620977.2
4: 0.15 1 -1.5 0.4 4 -620977.2
5: 0.20 1 -1.5 0.4 5 -620977.2
6: 0.25 1 -1.5 0.4 6 -620977.2
which generates the wrong values for lp
.
Edit thank you for the comments and responses. I am aware that this scenario could be addressed by using alternative methods, my interest is in what the preferred way to do this is when using data.table
.
Edit thank you for the responses again. As there have been none that address the question of how to do this explicitly with data.table
, at the moment, I am assuming that there is no ideal way to achieve this without turning to base R.
If you want to have a better performance (time) you could rewrite the rowwise function to a calculation with matrices.
start <- Sys.time()
grid_mat <- as.matrix(grid[, list(b1, b2, b3, 1)])
# function parameters
N <- nrow(d); mub = 1; taub = 10; a = 0.5; z = 0.7
d$const <- 1
# combining d$y - mu in this step already
mu_op <- matrix(c(-d$const, -d$x1, -d$x2, d$y), nrow = 4, byrow = TRUE)
mu_mat <- grid_mat %*% mu_op
mub_mat <- (grid_mat[, c("b1", "b2", "b3")] - mub)^2
# just to save one calculation of the log
phi <- grid$phi
log_phi <- log(grid$phi)
grid$lp2 <- -N * log_phi -
(1/(2*phi^2)) * rowSums(mu_mat^2) -
(1/(2*taub^2))*( rowSums(mub_mat) ) -
(a+1)*log_phi - (z/phi)
head(grid)
difftime(Sys.time(), start)
The first rows:
b1 b2 b3 phi id lp lp2
1: 0.00 1 -1.5 0.4 1 -398.7618 -398.7618
2: 0.05 1 -1.5 0.4 2 -380.3674 -380.3674
3: 0.10 1 -1.5 0.4 3 -363.5356 -363.5356
4: 0.15 1 -1.5 0.4 4 -348.2663 -348.2663
5: 0.20 1 -1.5 0.4 5 -334.5595 -334.5595
6: 0.25 1 -1.5 0.4 6 -322.4152 -322.4152
For the timing:
# on your code on my pc:
Time difference of 4.390684 secs
# my code on my pc:
Time difference of 0.680476 secs
I think you can use matrix multiplication and other vectorization techniques to simplify your code, which helps you avoid running function logpost
in a row-wise manner.
Below is a vectorized version of logpost
, i.e., logpost2
logpost2 <- function(d, dd, mub = 1, taub = 10, a = 0.5, z = 0.7) {
bmat <- as.matrix(dd[, .(b1, b2, b3)])
xmat <- cbind(1, as.matrix(d[, .(x1, x2)]))
phi <- dd$phi
phi_log <- log(phi)
lp <- -(a + nrow(d) + 1) * phi_log -
(1 / (2 * phi^2)) * colSums((d$y - tcrossprod(xmat, bmat))^2) -
(1 / (2 * taub^2)) * rowSums((bmat - mub)^2) - (z / phi)
lp
}
and you will see
> start <- Sys.time()
> grid[, lp := logpost2(d, .SD)]
> difftime(Sys.time(), start)
Time difference of 0.1966231 secs
and
> head(grid)
b1 b2 b3 phi id lp
1: 0.00 1 -1.5 0.4 1 -398.7618
2: 0.05 1 -1.5 0.4 2 -380.3674
3: 0.10 1 -1.5 0.4 3 -363.5356
4: 0.15 1 -1.5 0.4 4 -348.2663
5: 0.20 1 -1.5 0.4 5 -334.5595
6: 0.25 1 -1.5 0.4 6 -322.4152
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With