Suppose you have the following table:
Student<-c("Bob", "Joe", "Sam", "John")
ClassDate<-as.Date(c("2020-01-01", "2020-01-01", "2020-01-02", "2020-01-05"), "%Y-%m-%d")
df<-data.frame(Student=Student, ClassDate=ClassDate)
df
Student ClassDate
1 Bob 2020-01-01
2 Joe 2020-01-01
3 Sam 2020-01-02
4 John 2020-01-05
When you make a cumulative frequency table for ClassDate, you get the following:
data.frame(cumsum(table(df$ClassDate)))
cumsum.table.df.ClassDate..
2020-01-01 2
2020-01-02 3
2020-01-05 4
However, what I'm looking for is the following which still includes the missing dates
cumsum.table.df.ClassDate..
2020-01-01 2
2020-01-02 3
2020-01-03 3
2020-01-04 3
2020-01-05 4
An option is to create a column of 1s, expand the data with complete
by creating a seq
uence from min
imum to max
imum value of 'ClassDate' by
'day' while fill
ing the 'n' with 0, then do a group by sum
on the 'n' column, and do the cumsum
library(dplyr)
library(tidyr)
df %>%
mutate(n = 1) %>%
complete(ClassDate = seq(min(ClassDate), max(ClassDate),
by = '1 day'), fill = list(n = 0)) %>%
group_by(ClassDate) %>%
summarise(n = sum(n), .groups = 'drop') %>%
mutate(n = cumsum(n))
-output
# A tibble: 5 x 2
# ClassDate n
#* <date> <dbl>
#1 2020-01-01 2
#2 2020-01-02 3
#3 2020-01-03 3
#4 2020-01-04 3
#5 2020-01-05 4
In base R
, an option is also to specify the levels
while converting to factor
v1 <- with(df, factor(ClassDate, levels =
as.character(seq(min(ClassDate), max(ClassDate), by = '1 day'))))
data.frame(Cumsum = cumsum(table(v1)))
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With