Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Plotting pandas multi-index DataFrame with one index as Y-axis and other as X-axis

I have a multi-index dataframe that is sampled here:

import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
%matplotlib inline

df = pd.read_csv('https://docs.google.com/uc?id=1mjmatO1PVGe8dMXBc4Ukzn5DkkKsbcWY&export=download', index_col=[0,1])

df

enter image description here

I tried to plot this so that each column ['Var1', 'Var2', 'Var3', 'Var4'] in a separate figure, the Country is a curve, and y-axis, and the Year is the x-axis

the requested figure would be like this Ms-Excel figure

enter image description here

I tried to plot it using

f, a = plt.subplots(nrows=2, ncols=2, figsize=(9, 12), dpi= 80)

df.xs('Var1').plot(ax=a[0])
df.xs('Var2').plot(ax=a[1])
df.xs('Var3').plot(x=a[2])
df.xs('Var4').plot(kax=a[3])

but it gives KeyError: 'Var1'

I also tried the following

f, a = plt.subplots(nrows=2, ncols=2, 
                              figsize=(7, 10), dpi= 80)
for indicator in indicators_list:
    for c, country in enumerate(in_countries):
        ax = df[indicator].plot()
        ax.title.set_text(country + " " + indicator) 

but it returns 3 empty figures and one figure with all the data in it enter image description here

What is wrong with my trials and What can I do to get what I need?

like image 420
Mohammad ElNesr Avatar asked Jan 08 '18 13:01

Mohammad ElNesr


2 Answers

If I understand correctly you should first pivot your dataframe in order to have countries as columns:

In [151]: df.reset_index().pivot('Year','Country','Var1').plot(ax=a[0,0], title='Var1', grid=True)
Out[151]: <matplotlib.axes._subplots.AxesSubplot at 0x127e2320>

In [152]: df.reset_index().pivot('Year','Country','Var2').plot(ax=a[0,1], title='Var2', grid=True)
Out[152]: <matplotlib.axes._subplots.AxesSubplot at 0x12f47b00>

In [153]: df.reset_index().pivot('Year','Country','Var3').plot(ax=a[1,0], title='Var3', grid=True)
Out[153]: <matplotlib.axes._subplots.AxesSubplot at 0x12f84668>

In [154]: df.reset_index().pivot('Year','Country','Var4').plot(ax=a[1,1], title='Var4', grid=True)
Out[154]: <matplotlib.axes._subplots.AxesSubplot at 0x12fbd390>

Result:

enter image description here

like image 158
MaxU - stop WAR against UA Avatar answered Sep 17 '22 01:09

MaxU - stop WAR against UA


  • If the data is in the form with the columns in the index, then .reset_index() or do not specify the index_col parameter when loading the data.
  • Now convert the dataframe to a long form with pandas.DataFrame.melt
  • Plot using seaborn.relplot. seaborn is a high-level API for matplotlib
  • In this example, random test data is used, because the file is no longer available.
  • Tested in python 3.8.11, pandas 1.3.2, matplotlib 3.4.2, seaborn 0.11.2
import seaborn as sns
import pandas as pd

# reset the index if needed
df = df.reset_index()

# convert the dataframe to a long form
dfm = df.melt(id_vars=['Country', 'Year'])

# display(dfm.head())
  Country  Year variable  value
0     USA  1960       V1   67.0
1     USA  1970       V1   48.0
2     USA  1980       V1   59.0
3     USA  1990       V1   20.0
4     USA  2000       V1   41.0

# plot
sns.relplot(data=dfm, kind='line', col='variable', col_wrap=2, x='Year', y='value', hue='Country',
            height=3.75, facet_kws={'sharey': False, 'sharex': True})

enter image description here

Sample Data

data = {'Country': ['USA', 'USA', 'USA', 'USA', 'USA', 'USA', 'USA', 'Egypt', 'Egypt', 'Egypt', 'Egypt', 'France', 'France', 'France', 'France', 'France', 'France', 'France', 'S.Africa', 'S.Africa', 'S.Africa'], 'Year': [1960, 1970, 1980, 1990, 2000, 2010, 2020, 1980, 1990, 2000, 2010, 1950, 1960, 1970, 1980, 1990, 2000, 2010, 1990, 2000, 2010], 'V1': [67, 48, 59, 20, 41, 71, 51, 63, 43, 18, 54, 54, 58, 27, 26, 42, 79, 77, 65, 78, 33], 'V2': [7.802, 4.89, 5.329, 1.899, 9.586, 8.827, 0.865, 2.436, 2.797, 2.157, 0.019, 6.975, 0.933, 7.579, 3.463, 7.829, 5.098, 1.726, 7.386, 7.861, 8.062], 'V3': [0.725, 0.148, 0.62, 0.322, 0.109, 0.565, 0.417, 0.094, 0.324, 0.529, 0.078, 0.741, 0.236, 0.245, 0.993, 0.591, 0.812, 0.768, 0.851, 0.355, 0.991], 'V4': [76.699, 299.423, 114.279, 158.051, 118.266, 273.444, 213.815, 144.96, 145.808, 107.922, 223.09, 68.148, 169.363, 220.797, 79.168, 277.759, 263.677, 244.575, 126.412, 277.063, 218.401]}
df = pd.DataFrame(data)

  Country  Year  V1     V2     V3       V4
0     USA  1960  67  7.802  0.725   76.699
1     USA  1970  48  4.890  0.148  299.423
2     USA  1980  59  5.329  0.620  114.279
3     USA  1990  20  1.899  0.322  158.051
4     USA  2000  41  9.586  0.109  118.266
like image 21
Trenton McKinney Avatar answered Sep 20 '22 01:09

Trenton McKinney