Take the following toy DataFrame:
data = np.arange(35, dtype=np.float32).reshape(7, 5)
data = pd.concat((
pd.DataFrame(list('abcdefg'), columns=['field1']),
pd.DataFrame(data, columns=['field2', '2014', '2015', '2016', '2017'])),
axis=1)
data.iloc[1:4, 4:] = np.nan
data.iloc[4, 3:] = np.nan
print(data)
field1 field2 2014 2015 2016 2017
0 a 0.0 1.0 2.0 3.0 4.0
1 b 5.0 6.0 7.0 NaN NaN
2 c 10.0 11.0 12.0 NaN NaN
3 d 15.0 16.0 17.0 NaN NaN
4 e 20.0 21.0 NaN NaN NaN
5 f 25.0 26.0 27.0 28.0 29.0
6 g 30.0 31.0 32.0 33.0 34.0
I'd like to replace the "year" columns (2014-2017) with two fields: the most recent non-null observation, and the corresponding year of that observation. Assume field1
is a unique key. (I'm not looking to do any groupby ops, just 1 row per record.) I.e.:
field1 field2 obs date
0 a 0.0 4.0 2017
1 b 5.0 7.0 2015
2 c 10.0 12.0 2015
3 d 15.0 17.0 2015
4 e 20.0 21.0 2014
5 f 25.0 29.0 2017
6 g 30.0 34.0 2017
I've gotten this far:
pd.melt(data, id_vars=['field1', 'field2'],
value_vars=['2014', '2015', '2016', '2017'])\
.dropna(subset=['value'])
field1 field2 variable value
0 a 0.0 2014 1.0
1 b 5.0 2014 6.0
2 c 10.0 2014 11.0
3 d 15.0 2014 16.0
4 e 20.0 2014 21.0
5 f 25.0 2014 26.0
6 g 30.0 2014 31.0
# ...
But am struggling with how to pivot back to desired format.
Maybe:
d2 = data.melt(id_vars=["field1", "field2"], var_name="date", value_name="obs").dropna(subset=["obs"])
d2["date"] = d2["date"].astype(int)
df = d2.loc[d2.groupby(["field1", "field2"])["date"].idxmax()]
which gives me
field1 field2 date obs
21 a 0.0 2017 4.0
8 b 5.0 2015 7.0
9 c 10.0 2015 12.0
10 d 15.0 2015 17.0
4 e 20.0 2014 21.0
26 f 25.0 2017 29.0
27 g 30.0 2017 34.0
what about the following apporach:
In [160]: df
Out[160]:
field1 field2 2014 2015 2016 2017
0 a 0.0 1.0 2.0 3.0 -10.0
1 b 5.0 6.0 7.0 NaN NaN
2 c 10.0 11.0 12.0 NaN NaN
3 d 15.0 16.0 17.0 NaN NaN
4 e 20.0 21.0 NaN NaN NaN
5 f 25.0 26.0 27.0 28.0 29.0
6 g 30.0 31.0 32.0 33.0 34.0
In [180]: df.groupby(lambda x: 'obs' if x.isdigit() else x, axis=1) \
...: .last() \
...: .assign(date=df.filter(regex='^\d{4}').loc[:, ::-1].notnull().idxmax(1))
Out[180]:
field1 field2 obs date
0 a 0.0 -10.0 2017
1 b 5.0 7.0 2015
2 c 10.0 12.0 2015
3 d 15.0 17.0 2015
4 e 20.0 21.0 2014
5 f 25.0 29.0 2017
6 g 30.0 34.0 2017
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With