I am trying to compute the auto correlation of a signal using the property that the autocorrelation is the inverse fourier transform of the power spectrum. However, when I use scipy (or numpy) fft to do this and compare to the direct calculation of the autocorrelation function, I get the wrong answer, Specifically, the fft version levels off at a small negative value for large delay times, which is clearly wrong.
My MWE is below, along with the output. Am I using the fft wrong?
import numpy as np
import matplotlib.pyplot as pl
from scipy.fftpack import fft, ifft
def autocorrelation(x) :
xp = (x - np.average(x))/np.std(x)
f = fft(xp)
p = np.absolute(f)**2
pi = ifft(p)
return np.real(pi)[:len(xp)/2]/(len(xp))
def autocorrelation2(x):
maxdelay = len(x)/5
N = len(x)
mean = np.average(x)
var = np.var(x)
xp = (x - mean)/np.sqrt(var)
autocorrelation = np.zeros(maxdelay)
for r in range(maxdelay):
for k in range(N-r):
autocorrelation[r] += xp[k]*xp[k+r]
autocorrelation[r] /= float(N-r)
return autocorrelation
def autocorrelation3(x):
xp = (x - np.mean(x))/np.std(x)
result = np.correlate(xp, xp, mode='full')
return result[result.size/2:]/len(xp)
def main():
t = np.linspace(0,20,1024)
x = np.exp(-t**2)
pl.plot(t[:200], autocorrelation(x)[:200],label='scipy fft')
pl.plot(t[:200], autocorrelation2(x)[:200],label='direct autocorrelation')
pl.plot(t[:200], autocorrelation3(x)[:200],label='numpy correlate')
pl.legend()
pl.show()
if __name__=='__main__':
main()
Discrete FT assumes signals to be periodic. So in your fft
based code you are computing a wrap-around autocorrelation. To avoid that you'd have to do some form of 0
-padding:
def autocorrelation(x):
xp = ifftshift((x - np.average(x))/np.std(x))
n, = xp.shape
xp = np.r_[xp[:n//2], np.zeros_like(xp), xp[n//2:]]
f = fft(xp)
p = np.absolute(f)**2
pi = ifft(p)
return np.real(pi)[:n//2]/(np.arange(n//2)[::-1]+n//2)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With