I am trying to use pivot_longer
. However, I am not sure how to use names_sep
or names_pattern
to solve this.
dat <- tribble(
~group, ~BP, ~HS, ~BB, ~lowerBP, ~upperBP, ~lowerHS, ~upperHS, ~lowerBB, ~upperBB,
"1", 0.51, 0.15, 0.05, 0.16, 0.18, 0.5, 0.52, 0.14, 0.16,
"2.1", 0.67, 0.09, 0.06, 0.09, 0.11, 0.66, 0.68, 0.08, 0.1,
"2.2", 0.36, 0.13, 0.07, 0.12, 0.15, 0.34, 0.38, 0.12, 0.14,
"2.3", 0.09, 0.17, 0.09, 0.13, 0.16, 0.08, 0.11, 0.15, 0.18,
"2.4", 0.68, 0.12, 0.07, 0.12, 0.14, 0.66, 0.69, 0.11, 0.13,
"3", 0.53, 0.15, 0.06, 0.14, 0.16, 0.52, 0.53, 0.15, 0.16)
Desired output (First row from wide data)
group names values lower upper
1 BP 0.51 0.16 0.18
1 HS 0.15 0.5 0.52
1 BB 0.05 0.14 0.16
The cbind() operation is used to stack the columns of the data frame together. Initially, the first two columns of the data frame are combined together using the df[1:2]. This is followed by the application of stack() method applied on the last two columns.
Longer. pivot_longer() makes datasets longer by increasing the number of rows and decreasing the number of columns. I don't believe it makes sense to describe a dataset as being in “long form”. Length is a relative term, and you can only say (e.g.) that dataset A is longer than dataset B.
How do I concatenate two columns in R? To concatenate two columns you can use the <code>paste()</code> function. For example, if you want to combine the two columns A and B in the dataframe df you can use the following code: <code>df['AB'] <- paste(df$A, df$B)</code>.
pivot_wider() is the opposite of pivot_longer() : it makes a dataset wider by increasing the number of columns and decreasing the number of rows. It's relatively rare to need pivot_wider() to make tidy data, but it's often useful for creating summary tables for presentation, or data in a format needed by other tools.
Here is solution following a similar method that @Fnguyen used but using the newer pivot_longer
and pivot_wider
construct:
library(dplyr)
library(tidyr)
longer<-pivot_longer(dat, cols=-1, names_pattern = "(.*)(..)$", names_to = c("limit", "name")) %>%
mutate(limit=ifelse(limit=="", "value", limit))
answer <-pivot_wider(longer, id_cols = c(group, name), names_from = limit, values_from = value, names_repair = "check_unique")
Most of the selecting, separating, mutating and renaming is taking place within the pivot function calls.
Update:
This regular expressions "(.*)(..)$" means:
( ) ( ) Look for two parts,
(.*) the first part should have zero or more characters
(..) the second part should have just 2 characters at the “$” end of the string
A data.table version (not sure yet how to retain the original names so that you dont need to post substitute them https://github.com/Rdatatable/data.table/issues/2551):
library(data.table)
df <- data.table(dat)
v <- c("BP","HS","BB")
setnames(df, v, paste0("x",v) )
g <- melt(df, id.vars = "group",
measure.vars = patterns(values = "x" ,
lower = "lower",
upper = "upper"),
variable.name = "names")
g[names==1, names := "BP" ]
g[names==2, names := "HS" ]
g[names==3, names := "BB" ]
group names values lower upper
1: 1 BP 0.51 0.16 0.18
2: 2.1 BP 0.67 0.09 0.11
3: 2.2 BP 0.36 0.12 0.15
4: 2.3 BP 0.09 0.13 0.16
5: 2.4 BP 0.68 0.12 0.14
6: 3 BP 0.53 0.14 0.16
7: 1 HS 0.15 0.50 0.52
8: 2.1 HS 0.09 0.66 0.68
9: 2.2 HS 0.13 0.34 0.38
10: 2.3 HS 0.17 0.08 0.11
11: 2.4 HS 0.12 0.66 0.69
12: 3 HS 0.15 0.52 0.53
13: 1 BB 0.05 0.14 0.16
14: 2.1 BB 0.06 0.08 0.10
15: 2.2 BB 0.07 0.12 0.14
16: 2.3 BB 0.09 0.15 0.18
17: 2.4 BB 0.07 0.11 0.13
18: 3 BB 0.06 0.15 0.16
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With