I'm trying to understand why one version of this code compiles, and one version does not.
{-# LANGUAGE RankNTypes, FlexibleContexts #-}
module Foo where
import Data.Vector.Generic.Mutable as M
import Data.Vector.Generic as V
import Control.Monad.ST
import Control.Monad.Primitive
data DimFun v m r =
DimFun {dim::Int, func :: v (PrimState m) r -> m ()}
runFun1 :: (Vector v r, MVector (Mutable v) r) =>
(forall m . (PrimMonad m) => DimFun (Mutable v) m r) -> v r -> v r
runFun1 (DimFun dim t) x | V.length x == dim = runST $ do
y <- thaw x
t y
unsafeFreeze y
runFun2 :: (Vector v r, MVector (Mutable v) r) =>
(forall m . (PrimMonad m) => DimFun (Mutable v) m r) -> v r -> v r
runFun2 t x = runST $ do
y <- thaw x
evalFun t y
unsafeFreeze y
evalFun :: (PrimMonad m, MVector v r) => DimFun v m r -> v (PrimState m) r -> m ()
evalFun (DimFun dim f) y | dim == M.length y = f y
runFun2
compiles fine (GHC-7.8.2), but runFun1
results in errors:
Could not deduce (PrimMonad m0) arising from a pattern
from the context (Vector v r, MVector (Mutable v) r)
bound by the type signature for
tfb :: (Vector v r, MVector (Mutable v) r) =>
(forall (m :: * -> *). PrimMonad m => TensorFunc m r) -> v r -> v r
at Testing/Foo.hs:(26,8)-(28,15)
The type variable ‘m0’ is ambiguous
Note: there are several potential instances:
instance PrimMonad IO -- Defined in ‘Control.Monad.Primitive’
instance PrimMonad (ST s) -- Defined in ‘Control.Monad.Primitive’
In the pattern: TensorFunc _ f
In an equation for ‘tfb’:
tfb (TensorFunc _ f) x
= runST
$ do { y <- thaw x;
f y;
unsafeFreeze y }
Couldn't match type ‘m0’ with ‘ST s’
because type variable ‘s’ would escape its scope
This (rigid, skolem) type variable is bound by
a type expected by the context: ST s (v r)
at Testing/Foo.hs:(29,26)-(32,18)
Expected type: ST s ()
Actual type: m0 ()
Relevant bindings include
y :: Mutable v s r (bound at Testing/Foo.hs:30:3)
f :: forall (v :: * -> * -> *).
MVector v r =>
v (PrimState m0) r -> m0 ()
(bound at Testing/Foo.hs:29:19)
In a stmt of a 'do' block: f y
In the second argument of ‘($)’, namely
‘do { y <- thaw x;
f y;
unsafeFreeze y }’
Could not deduce (s ~ PrimState m0)
from the context (Vector v r, MVector (Mutable v) r)
bound by the type signature for
tfb :: (Vector v r, MVector (Mutable v) r) =>
(forall (m :: * -> *). PrimMonad m => TensorFunc m r) -> v r -> v r
at Testing/Foo.hs:(26,8)-(28,15)
‘s’ is a rigid type variable bound by
a type expected by the context: ST s (v r) at Testing/Foo.hs:29:26
Expected type: Mutable v (PrimState m0) r
Actual type: Mutable v s r
Relevant bindings include
y :: Mutable v s r (bound at Testing/Foo.hs:30:3)
f :: forall (v :: * -> * -> *).
MVector v r =>
v (PrimState m0) r -> m0 ()
(bound at Testing/Foo.hs:29:19)
In the first argument of ‘f’, namely ‘y’
In a stmt of a 'do' block: f y
I'm pretty sure the rank-2 type is to blame, possibly caused by a monomorphism restriction. However, as suggested in a previous question of mine, I enabled -XNoMonomorphismRestriction
, but got the same error.
What is the difference between these seemingly identical code snippets?
I think that having a rough mental model of the type-level plumbing involved here is essential, so I'm going go talk about "implicit things" in a bit more detail, and scrutinize your problem only after that. Readers only interested in the direct solution to the question may skip to the "Pattern matching on polymorhpic values" subsection and the end.
GHC compiles Haskell to a small intermediate language called Core, which is essentially a rank-n polymorphic typed lambda calculus called System F (plus some extensions). Below I am going use Haskell alongside a notation somewhat resembling Core; I hope it's not overly confusing.
In Core, polymorphic functions are functions which take types as additional arguments, and arguments further down the line can refer to those types or have those types:
-- in Haskell
const :: forall (a :: *) (b :: *). a -> b -> a
const x y = x
-- in pseudo-Core
const' :: (a :: *) -> (b :: *) -> a -> b -> a
const' a b x y = x
This means that we must also supply type arguments to these functions whenever we want to use them. In Haskell type inference usually figures out the type arguments and supplies them automatically, but if we look at the Core output (for example, see this introduction for how to do that), type arguments and applications are visible everywhere. Building a mental model of this makes figuring out higher-rank code a whole lot easier:
-- Haskell
poly :: (forall a. a -> a) -> b -> (Int, b)
poly f x = (f 0, f x)
-- pseudo-Core
poly' :: (b :: *) -> ((a :: *) -> a -> a) -> b -> (Int, b)
poly' b f x = (f Int 0, f b x)
And it makes clear why some things don't typecheck:
wrong :: (a -> a) -> (Int, Bool)
wrong f = (f 0, f True)
wrong' :: (a :: *) -> (a -> a) -> (Int, Bool)
wrong' a f = (f ?, f ?) -- f takes an "a", not Int or Bool.
-- Haskell
show :: forall a. Show a => a -> String
show x = show x
-- pseudo-Core
show' :: (a :: *) -> Show a -> a -> String
show' a (ShowDict showa) x = showa x
What is ShowDict
and Show a
here? ShowDict
is just a Haskell record containing a show
instance, and GHC generates such records for each instance of a class. Show a
is just the type of this instance record:
-- We translate classes to a record type:
class Show a where show :: a -> string
data Show a = ShowDict (show :: a -> String)
-- And translate instances to concrete records of the class type:
instance Show () where show () = "()"
showUnit :: Show ()
showUnit = ShowDict (\() -> "()")
For example, whenever we want to apply show
, the compiler has to search the scope in order to find a suitable type argument and an instance dictionary for that type. Note that while instances are always top level, quite often in polymorphic functions the instances are passed in as arguments:
data Foo = Foo
-- instance Show Foo where show _ = "Foo"
showFoo :: Show Foo
showFoo = ShowDict (\_ -> "Foo")
-- The compiler fills in an instance from top level
fooStr :: String
fooStr = show' Foo showFoo Foo
polyShow :: (Show a, Show b) => a -> b -> String
polyShow a b = show a ++ show b
-- Here we get the instances as arguments (also, note how (++) also takes an extra
-- type argument, since (++) :: forall a. [a] -> [a] -> [a])
polyShow' :: (a :: *) -> (b :: *) -> Show a -> Show b -> a -> b -> String
polyShow' a b (ShowDict showa) (ShowDict showb) a b -> (++) Char (showa a) (showb b)
In Haskell, pattern matching on functions doesn't make sense. Polymorphic values can be also viewed as functions, but we can pattern match on them, just like in OP's erroneous runfun1
example. However, all the implicit arguments must be inferable in the scope, or else the mere act of pattern matching is a type error:
import Data.Monoid
-- it's a type error even if we don't use "a" or "n".
-- foo :: (forall a. Monoid a => (a, Int)) -> Int
-- foo (a, n) = 0
foo :: ((a :: *) -> Monoid a -> (a, Int)) -> Int
foo f = ? -- What are we going to apply f to?
In other words, by pattern matching on a polymorphic value, we assert that all implicit arguments have been already applied. In the case of foo
here, although there isn't a syntax for type application in Haskell, we can sprinkle around type annotations:
{-# LANGUAGE ScopedTypeVariables, RankNTypes #-}
foo :: (forall a. Monoid a => (a, Int)) -> Int
foo x = case (x :: (String, Int)) of (_, n) -> n
-- or alternatively
foo ((_ :: String), n) = n
Again, pseudo-Core makes the situation clearer:
foo :: ((a :: *) -> Monoid a -> (a, Int)) -> Int
foo f = case f String monoidString of (_ , n) -> n
Here monoidString
is some available Monoid
instance of String
.
Implicit data fields usually correspond to the notion of "existential types" in Haskell. In a sense, they are dual to implicit function arguments with respect to term obligations:
Standard example:
{-# LANGUAGE GADTs #-}
data Showy where
Showy :: forall a. Show a => a -> Showy
-- pseudo-Core
data Showy where
Showy :: (a :: *) -> Show a -> a -> Showy
-- when constructing "Showy", "Show a" must be also available:
someShowy :: Showy
someShowy = Showy (300 :: Int)
-- in pseudo-Core
someShowy' = Showy Int showInt 300
-- When pattern matching on "Showy", we get an instance in scope too
showShowy :: Showy -> String
showShowy (Showy x) = show x
showShowy' :: Showy -> String
showShowy' (Showy a showa x) = showa x
We have the function
runFun1 :: (Vector v r, MVector (Mutable v) r) =>
(forall m . (PrimMonad m) => DimFun (Mutable v) m r) -> v r -> v r
runFun1 dfun@(DimFun dim t) x | V.length x == dim = runST $ do
y <- thaw x
t y
unsafeFreeze y
Remember that pattern matching on polymorphic values asserts that all implicit arguments are available in the scope. Except that here, at the point of pattern matching there is no m
at all in scope, let alone a PrimMonad
instance for it.
With GHC 7.8.x it's is good practice to use type holes liberally:
runFun1 :: (Vector v r, MVector (Mutable v) r) =>
(forall m . (PrimMonad m) => DimFun (Mutable v) m r) -> v r -> v r
runFun1 (DimFun dim t) x | V.length x == dim = _
Now GHC will duly display the type of the hole, and also the types of the variables in the context. We can see that t
has type Mutable v (PrimState m0) r -> m0 ()
, and we also see that m0
is not listed as bound anywhere. Indeed, it is a notorious "ambiguous" type variable conjured up by GHC as a placeholder.
So, why don't we try manually supplying the arguments, just as in the prior example with the Monoid
instance? We know that we will use t
inside an ST
action, so we can try fixing m
as ST s
and GHC automatically applies the PrimMonad
instance for us:
runFun1 :: forall v r. (Vector v r, MVector (Mutable v) r) =>
(forall m . (PrimMonad m) => DimFun (Mutable v) m r) -> v r -> v r
runFun1 (DimFun dim (t :: Mutable v s r -> ST s ())) x
| V.length x == dim = runST $ do
y <- thaw x
t y
unsafeFreeze y
... except it doesn't work and we get the error "Couldn't match type ‘s’ with ‘s1’ because type variable ‘s1’ would escape its scope"
.
It turns out - comes as no surprise - that we've forgotten about yet another implicit argument. Recall the type of runST
:
runST :: (forall s. ST s a) -> a
We can imagine that runST
takes a function of type ((s :: PrimState ST) -> ST s a)
, and then our code looks like this:
runST $ \s -> do
y <- thaw x -- y :: Mutable v s r
t y -- error: "t" takes a "Mutable v s r" with a different "s".
unsafeFreeze y
The s
in t
's argument type is silently introduced at the outermost scope:
runFun1 :: forall v s r. ...
And thus the two s
-es are distinct.
A possible solution is to pattern match on the DimFun
argument inside the ST action. There, the correct s
is in scope, and GHC can supply ST s
as m
:
runFun1 :: forall v r. (Vector v r, MVector (Mutable v) r) =>
(forall m . PrimMonad m => DimFun (Mutable v) m r) -> v r -> v r
runFun1 dimfun x = runST $ do
y <- thaw x
case dimfun of
DimFun dim t | dim == M.length y -> t y
unsafeFreeze y
With some parameters made explicit:
runST $ \s -> do
y <- thaw x
case dimfun (ST s) primMonadST of
DimFun dim t | dim == M.length y -> t y
unsafeFreeze y
As an exercise, let's convert all of the function to pseudo-Core (but let's not desugar the do
syntax, because that would be way too ugly):
-- the full types of the functions involved, for reference
thaw :: forall m v a. (PrimMonad m, V.Vector v a) => v a -> m (V.Mutable v (PrimState m) a)
runST :: forall a. (forall s. ST s a) -> a
unsafeFreeze :: forall m v a. (PrimMonad m, Vector v a) => Mutable v (PrimState m) a -> v a
M.length :: forall v s a. MVector v s a -> Int
(==) :: forall a. Eq a => a -> a -> Bool
runFun1 ::
(v :: * -> *) -> (r :: *)
-> Vector v r -> MVector (Mutable v) r
-> ((m :: (* -> *)) -> PrimMonad m -> DimFun (Mutable v) m r)
-> v r -> v r
runFun1 v r vecInstance mvecInstance dimfun x = runST r $ \s -> do
y <- thaw (ST s) v r primMonadST vecInstance x
case dimFun (ST s) primMonadST of
DimFun dim t | (==) Int eqInt dim (M.length v s r y) -> t y
unsafeFreeze (ST s) v r primMonadST vecInstance y
That was a mouthful.
Now we are well-equipped to explain why runFun2
worked:
runFun2 :: (Vector v r, MVector (Mutable v) r) =>
(forall m . (PrimMonad m) => DimFun (Mutable v) m r) -> v r -> v r
runFun2 t x = runST $ do
y <- thaw x
evalFun t y
unsafeFreeze y
evalFun :: (PrimMonad m, MVector v r) => DimFun v m r -> v (PrimState m) r -> m ()
evalFun (DimFun dim f) y | dim == M.length y = f y
evalFun
is just a polymorphic function that gets called in the right place (we ultimately pattern match on t
in the right place), where the correct ST s
is available as the m
argument.
As a type system gets more sophisticated, pattern matching becomes a progressively more serious affair, with far-reaching consequences and non-trivial requirements. At the end of the spectrum you find full-dependent languages and proof assistants such as Agda, Idris or Coq, where pattern matching on a piece of data can mean accepting an arbitrary logical proposition as true in a certain branch of your program.
Though @AndrasKovacs gave a great answer, I think it is worth pointing out how to avoid this nastiness altogether. This answer to a related question by me shows how the "correct" definition for DimFun
makes all of the rank-2 stuff go away.
By defining DimFun
as
data DimFun v r =
DimFun {dim::Int, func :: forall s . (PrimMonad s) => v (PrimState s) r -> s ()}
runFun1
becomes:
runFun1 :: (Vector v r)
=> DimFun (Mutable v) r -> v r -> v r
runFun1 (DimFun dim t) x | dim == V.length x = runST $ do
y <- thaw x
t y
unsafeFreeze y
and compiles without issue.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With