After reading this article on writing polyvariadic functions in Haskell, I tried to write some of my own.
At first I thought I'd try to generalize it - so I could have a function that returned variadic functions by collapsing arguments as given.
{-# OPTIONS -fglasgow-exts #-}
module Collapse where
class Collapse a r | r -> a where
collapse :: (a -> a -> a) -> a -> r
instance Collapse a a where
collapse _ = id
instance (Collapse a r) => Collapse a (a -> r) where
collapse f a a' = collapse f (f a a')
However, the compiler didn't like that:
Collapse.hs:5:9:
Functional dependencies conflict between instance declarations:
instance Collapse a a -- Defined at Collapse.hs:5:9-20
instance (Collapse a r) => Collapse a (a -> r)
-- Defined at Collapse.hs:7:9-43
If I went back and added a wrapper type for the final result, however, it worked:
module Collapse where
class Collapse a r | r -> a where
collapse :: (a -> a -> a) -> a -> r
data C a = C a
instance Collapse a (C a) where
collapse _ = C . id
instance (Collapse a r) => Collapse a (a -> r) where
collapse f a a' = collapse f (f a a')
sum :: (Num a, Collapse a r) => a -> r
sum = collapse (+)
Once I made this change, it compiled fine, and I could use the collapse
function in ghci
.
ghci> let C s = Collapse.sum 1 2 3 in s
6
I'm not sure why the wrapper type is required for the final result. If anyone could explain that, I'd highly appreciate it. I can see that the compiler's telling me that it's some issue with the functional dependencies, but I don't really grok the proper use of fundeps yet.
Later, I tried to take a different tack, and try and define a variadic function generator for functions that took a list and returned a value. I had to do the same container trick, and also allow UndecidableInstances
.
{-# OPTIONS -fglasgow-exts #-}
{-# LANGUAGE UndecidableInstances #-}
module Variadic where
class Variadic a b r | r -> a, r -> b where
variadic :: ([a] -> b) -> r
data V a = V a
instance Variadic a b (V b) where
variadic f = V $ f []
instance (Variadic a b r) => Variadic a b (a -> r) where
variadic f a = variadic (f . (a:))
list :: Variadic a [a] r => r
list = variadic . id
foldl :: (Variadic b a r) => (a -> b -> a) -> a -> r
foldl f a = variadic (Prelude.foldl f a)
Without allowing UndecidableInstances
the compiler complained that my instance declarations were illegal:
Variadic.hs:7:0:
Illegal instance declaration for `Variadic a b (V b)'
(the Coverage Condition fails for one of the functional dependencies;
Use -XUndecidableInstances to permit this)
In the instance declaration for `Variadic a b (V b)'
Variadic.hs:9:0:
Illegal instance declaration for `Variadic a b (a -> r)'
(the Coverage Condition fails for one of the functional dependencies;
Use -XUndecidableInstances to permit this)
In the instance declaration for `Variadic a b (a -> r)'
However, once it compiled, I could successfully use it in ghci:
ghci> let V l = Variadic.list 1 2 3 in l
[1,2,3]
ghci> let vall p = Variadic.foldl (\b a -> b && (p a)) True
ghci> :t vall
vall :: (Variadic b Bool r) => (b -> Bool) -> r
ghci> let V b = vall (>0) 1 2 3 in b
True
I guess what I'm looking for is an explanation of why the container type for the final value is necessary, as well as why all the various functional dependencies are necessary.
Also, this seemed odd:
ghci> let vsum = Variadic.foldl (+) 0
<interactive>:1:10:
Ambiguous type variables `a', `r' in the constraint:
`Variadic a a r'
arising from a use of `Variadic.foldl' at <interactive>:1:10-29
Probable fix: add a type signature that fixes these type variable(s)
<interactive>:1:10:
Ambiguous type variable `a'in the constraint:
`Num a' arising from the literal `0' at <interactive>:1:29
Probable fix: add a type signature that fixes these type variable(s)
ghci> let vsum' = Variadic.foldl (+)
ghci> :t vsum'
(Num a, Variadic a a r) => t -> a -> r
ghci> :t vsum' 0
(Num a, Variadic a a r) => a -> r
ghci> let V s = vsum' 0 1 2 3 in s
6
I'm guessing that's fallout from allowing UndecidableInstances
, but I don't know, and I'd like to better understand what's going on.
Haskell - Functions. Functions play a major role in Haskell, as it is a functional programming language. Like other languages, Haskell does have its own functional definition and declaration. Function declaration consists of the function name and its argument list along with its output.
We sometimes have to write a function that is going to be used only once, throughout the entire lifespan of an application. To deal with this kind of situations, Haskell developers use another anonymous block known as lambda expression or lambda function. A function without having a definition is called a lambda function.
Recursion is a situation where a function calls itself repeatedly. Haskell does not provide any facility of looping any expression for more than once. Instead, Haskell wants you to break your entire functionality into a collection of different functions and use recursion technique to implement your functionality.
Like most other languages, Haskell starts compiling the code from the main method. Our code will generate the following output − Pattern Matching is process of matching specific type of expressions. It is nothing but a technique to simplify your code. This technique can be implemented into any type of Type class.
The idea behind functional dependencies is that in a declaration like
class Collapse a r | r -> a where
...
the r -> a
bit says that a
is uniquely determined by r
. So, you can't have instance Collapse (a -> r) (a -> r)
and instance Collapse a (a -> r)
. Note that instance Collapse (a -> r) (a -> r)
follows from instance Collapse a a
for the complete picture.
In other words, your code is trying to establish instance Collapse t t
(the type variable's name is of course unimportant) and instance Collapse a (a -> r)
. If you substitute (a -> r)
for t
in the first instance declaration, you get instance Collapse (a -> r) (a -> r)
. Now this is the only instance of Collapse
with the second type parameter equal to (a -> r)
that you can have, because the class declaration says that the first type parameter is to be deducible from the second. Yet next you try to establish instance a (a -> r)
, which would add another instance of Collapse
with the second type parameter being (a -> r)
. Thus, GHC complains.
Michał Marczyk is absolutely correct about the fundeps and instance matching issue, and the wrapper type seems like an easy fix. On the other hand, if you're already reading Oleg's site, you might prefer to go deeper down the rabbit hole and try writing an instance for "any type that isn't a function".
As far as UndecidableInstances goes, the coverage condition is described here; it should be obvious why your instances fail it. Note that the word "undecidable" here means undecidable in roughly the same sense as in "the Halting Problem is undecidable"--that is to say, you're telling GHC to recklessly attempt to resolve code that could send it into an infinite loop based only on your assertion that it's okay. It's fun for hacking neat ideas, but consenting to be a human first-pass type-checker for GHC is a burden I personally find wearying.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With