I'm trying to ensemble several neural networks using keras for R. In order to do so, I would like to parallelize the training of the different networks by using a "foreach" loop.
models <- list()
x_bagged <- list()
y_bagged <- list()
n_nets = 2
bag_frac <-0.7
len <- nrow(x_train)
for(i in 1:n_nets){
sam <- sample(len, floor(bag_frac*len), replace=FALSE)
x_bagged[[i]] <- x_train[sam,]
y_bagged[[i]] <- y_train[sam]
models[[i]] <- keras_model_sequential()
models[[i]] %>%
layer_dense(units = 100, input_shape = ncol(x_train), activation = "relu", kernel_initializer = 'glorot_normal') %>%
layer_batch_normalization() %>%
layer_dense(units = 100, activation = custom_activation, kernel_initializer = 'glorot_normal') %>%
layer_dense(units = 1, activation = 'linear', kernel_initializer = 'glorot_normal')
models[[i]] %>% compile(
loss = "MSE",
optimizer= optimizer_sgd(lr=0.01)
)
}
library(foreach)
library(doParallel)
cl<-makeCluster(2)
registerDoParallel(cl)
nep <- 10
foreach(i = 1:n_nets,.packages=c("keras")) %dopar% {
models[[i]] %>% keras::fit(
x_bagged[[i]], y_bagged[[i]],
epochs = nep,
validation_split = 0.1,
batch_size =256,
verbose=1
)
}
stopCluster(cl)
I have no problems running the code using %do% instead of %dopar%; however, when i try to fit the nets simultaneously on multiple cores, i get the following error:
Error in {: task 1 failed - "'what' must be a function or character string" Traceback:
- foreach(i = 1:n_reti, .packages = c("keras")) %dopar% { . models[[i]] %>% keras::fit(x_bagged[[i]], y_bagged[[i]], .
epochs = nep, validation_split = 0.1, batch_size = 256, .
verbose = 1) . }- e$fun(obj, substitute(ex), parent.frame(), e$data)
Does anyone kindly know how I can overcome this error? Is there any alternative way to parallelize the training of the models on R?
Thank you in advance!
Although this question is quite old, I got the same issue so I'm posting the solution here. The problem is that the Keras model object can not be transferred to the workers before being serialised. A quick workaround would be to serialise the models before sending them to the workers and then unserialising them on the nodes locally:
library(foreach)
library(doParallel)
cl<-makeCluster(2)
registerDoParallel(cl)
nep <- 10
# Serialize models before sending them to the workers
models_par <- lapply(models_par, keras::serialize_model)
# Now send the models, not just the indices
foreach(model = models_par,.packages=c("keras")) %dopar% {
# Unserialize locally
model_local <- keras::unserialize_model(model)
model_local %>% keras::fit(
x_bagged[[i]], y_bagged[[i]],
epochs = nep,
validation_split = 0.1,
batch_size =256,
verbose=1
)
# Serialize before sending back to master
keras::serialize_model(model_local)
}
stopCluster(cl)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With