I'm trying to run what I think is simple code to eliminate any columns with all NaNs, but can't get this to work (axis = 1
works just fine when eliminating rows):
import pandas as pd
import numpy as np
df = pd.DataFrame({'a':[1,2,np.nan,np.nan], 'b':[4,np.nan,6,np.nan], 'c':[np.nan, 8,9,np.nan], 'd':[np.nan,np.nan,np.nan,np.nan]})
df = df[df.notnull().any(axis = 0)]
print df
Full error:
raise IndexingError('Unalignable boolean Series provided as 'pandas.core.indexing.IndexingError: Unalignable boolean Series provided as indexer (index of the boolean Series and of the indexed object do not match
Expected output:
a b c
0 1.0 4.0 NaN
1 2.0 NaN 8.0
2 NaN 6.0 9.0
3 NaN NaN NaN
You need loc
, because filter by columns:
print (df.notnull().any(axis = 0))
a True
b True
c True
d False
dtype: bool
df = df.loc[:, df.notnull().any(axis = 0)]
print (df)
a b c
0 1.0 4.0 NaN
1 2.0 NaN 8.0
2 NaN 6.0 9.0
3 NaN NaN NaN
Or filter columns and then select by []
:
print (df.columns[df.notnull().any(axis = 0)])
Index(['a', 'b', 'c'], dtype='object')
df = df[df.columns[df.notnull().any(axis = 0)]]
print (df)
a b c
0 1.0 4.0 NaN
1 2.0 NaN 8.0
2 NaN 6.0 9.0
3 NaN NaN NaN
Or dropna
with parameter how='all'
for remove all columns filled by NaN
s only:
print (df.dropna(axis=1, how='all'))
a b c
0 1.0 4.0 NaN
1 2.0 NaN 8.0
2 NaN 6.0 9.0
3 NaN NaN NaN
You can use dropna
with axis=1
and thresh=1
:
In[19]:
df.dropna(axis=1, thresh=1)
Out[19]:
a b c
0 1.0 4.0 NaN
1 2.0 NaN 8.0
2 NaN 6.0 9.0
3 NaN NaN NaN
This will drop any column which doesn't have at least 1 non-NaN value which will mean any column with all NaN
will get dropped
The reason what you tried failed is because the boolean mask:
In[20]:
df.notnull().any(axis = 0)
Out[20]:
a True
b True
c True
d False
dtype: bool
cannot be aligned on the index which is what is used by default, as this produces a boolean mask on the columns
I came here because I tried to filter the 1st 2 letters like this:
filtered = df[(df.Name[0:2] != 'xx')]
The fix was:
filtered = df[(df.Name.str[0:2] != 'xx')]
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With