I am using Scikit-learn for text classification. I want to calculate the Information Gain for each attribute with respect to a class in a (sparse) document-term matrix.
H(Class) - H(Class | Attribute)
, where H
is the entropy.InfoGainAttribute
.(It was suggested that the formula above for Information Gain is the same measure as mutual information. This matches also the definition in wikipedia. Is it possible to use a specific setting for mutual information in scikit-learn to accomplish this task?)
Information gain calculates the reduction in entropy from the transformation of a dataset. It can be used for feature selection by evaluating the Information gain of each variable in the context of the target variable.
Information Gain. Information gain is a decrease in entropy. It computes the difference between entropy before split and average entropy after split of the dataset based on given attribute values. ID3 (Iterative Dichotomiser) decision tree algorithm uses information gain.
You can use scikit-learn's mutual_info_classif
here is an example
from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_selection import mutual_info_classif
from sklearn.feature_extraction.text import CountVectorizer
categories = ['talk.religion.misc',
'comp.graphics', 'sci.space']
newsgroups_train = fetch_20newsgroups(subset='train',
categories=categories)
X, Y = newsgroups_train.data, newsgroups_train.target
cv = CountVectorizer(max_df=0.95, min_df=2,
max_features=10000,
stop_words='english')
X_vec = cv.fit_transform(X)
res = dict(zip(cv.get_feature_names(),
mutual_info_classif(X_vec, Y, discrete_features=True)
))
print(res)
this will output a dictionary of each attribute, i.e. item in the vocabulary as keys and their information gain as values
here is a sample of the output
{'bible': 0.072327479595571439,
'christ': 0.057293733680219089,
'christian': 0.12862867565281702,
'christians': 0.068511328611810071,
'file': 0.048056478042481157,
'god': 0.12252523919766867,
'gov': 0.053547274485785577,
'graphics': 0.13044709565039875,
'jesus': 0.09245436105573257,
'launch': 0.059882179387444862,
'moon': 0.064977781072557236,
'morality': 0.050235104394123153,
'nasa': 0.11146392824624819,
'orbit': 0.087254803670582998,
'people': 0.068118370234354936,
'prb': 0.049176995204404481,
'religion': 0.067695617096125316,
'shuttle': 0.053440976618359261,
'space': 0.20115901737978983,
'thanks': 0.060202010019767334}
Here is my proposition to calculate the information gain using pandas:
from scipy.stats import entropy
import pandas as pd
def information_gain(members, split):
'''
Measures the reduction in entropy after the split
:param v: Pandas Series of the members
:param split:
:return:
'''
entropy_before = entropy(members.value_counts(normalize=True))
split.name = 'split'
members.name = 'members'
grouped_distrib = members.groupby(split) \
.value_counts(normalize=True) \
.reset_index(name='count') \
.pivot_table(index='split', columns='members', values='count').fillna(0)
entropy_after = entropy(grouped_distrib, axis=1)
entropy_after *= split.value_counts(sort=False, normalize=True)
return entropy_before - entropy_after.sum()
members = pd.Series(['yellow','yellow','green','green','blue'])
split = pd.Series([0,0,1,1,0])
print (information_gain(members, split))
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With