I have an array of distances called dists. I want to select dists which are between two values. I wrote the following line of code to do that:
dists[(np.where(dists >= r)) and (np.where(dists <= r + dr))]
However this selects only for the condition
(np.where(dists <= r + dr))
If I do the commands sequentially by using a temporary variable it works fine. Why does the above code not work, and how do I get it to work?
Cheers
where() with multiple conditions. Call numpy. where(condition) with condition as multiple boolean expressions involving the array combined using | (or) or & (and). Use arr[x] with x as the previous results to get a new array containing only the elements of arr for which each conditions is True .
We can use nested np. where() condition checks ( like we do for CASE THEN condition checking in other languages).
The numpy. where() function returns the indices of elements in an input array where the given condition is satisfied.
The best way in your particular case would just be to change your two criteria to one criterion:
dists[abs(dists - r - dr/2.) <= dr/2.]
It only creates one boolean array, and in my opinion is easier to read because it says, is dist
within a dr
or r
? (Though I'd redefine r
to be the center of your region of interest instead of the beginning, so r = r + dr/2.
) But that doesn't answer your question.
The answer to your question:
You don't actually need where
if you're just trying to filter out the elements of dists
that don't fit your criteria:
dists[(dists >= r) & (dists <= r+dr)]
Because the &
will give you an elementwise and
(the parentheses are necessary).
Or, if you do want to use where
for some reason, you can do:
dists[(np.where((dists >= r) & (dists <= r + dr)))]
Why:
The reason it doesn't work is because np.where
returns a list of indices, not a boolean array. You're trying to get and
between two lists of numbers, which of course doesn't have the True
/False
values that you expect. If a
and b
are both True
values, then a and b
returns b
. So saying something like [0,1,2] and [2,3,4]
will just give you [2,3,4]
. Here it is in action:
In [230]: dists = np.arange(0,10,.5) In [231]: r = 5 In [232]: dr = 1 In [233]: np.where(dists >= r) Out[233]: (array([10, 11, 12, 13, 14, 15, 16, 17, 18, 19]),) In [234]: np.where(dists <= r+dr) Out[234]: (array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]),) In [235]: np.where(dists >= r) and np.where(dists <= r+dr) Out[235]: (array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]),)
What you were expecting to compare was simply the boolean array, for example
In [236]: dists >= r Out[236]: array([False, False, False, False, False, False, False, False, False, False, True, True, True, True, True, True, True, True, True, True], dtype=bool) In [237]: dists <= r + dr Out[237]: array([ True, True, True, True, True, True, True, True, True, True, True, True, True, False, False, False, False, False, False, False], dtype=bool) In [238]: (dists >= r) & (dists <= r + dr) Out[238]: array([False, False, False, False, False, False, False, False, False, False, True, True, True, False, False, False, False, False, False, False], dtype=bool)
Now you can call np.where
on the combined boolean array:
In [239]: np.where((dists >= r) & (dists <= r + dr)) Out[239]: (array([10, 11, 12]),) In [240]: dists[np.where((dists >= r) & (dists <= r + dr))] Out[240]: array([ 5. , 5.5, 6. ])
Or simply index the original array with the boolean array using fancy indexing
In [241]: dists[(dists >= r) & (dists <= r + dr)] Out[241]: array([ 5. , 5.5, 6. ])
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With