Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Numpy Vectorization of sliding-window operation

I have the following numpy arrays:

arr_1 = [[1,2],[3,4],[5,6]]   # 3 X 2 
arr_2 = [[0.5,0.6],[0.7,0.8],[0.9,1.0],[1.1,1.2],[1.3,1.4]]  # 5 X 2

arr_1 is clearly a 3 X 2 array, whereas arr_2 is a 5 X 2 array.

Now without looping, I want to element-wise multiply arr_1 and arr_2 so that I apply a sliding window technique (window size 3) to arr_2.

Example:

Multiplication 1:  np.multiply(arr_1,arr_2[:3,:])

Multiplication 2: np.multiply(arr_1,arr_2[1:4,:])

Multiplication 3: np.multiply(arr_1,arr_2[2:5,:])

I want to do this in some sort of a matrix multiplication form to make it faster than my current solution which is of the form:

for i in (2):
   np.multiply(arr_1,arr_2[i:i+3,:])  

So if the number of rows in arr_2 are large (of the order of tens of thousands), this solution doesn't really scale very well.

Any help would be much appreciated.

like image 568
Nikhil Avatar asked Aug 30 '16 16:08

Nikhil


People also ask

How does vectorization work in NumPy?

The vectorized function evaluates pyfunc over successive tuples of the input arrays like the python map function, except it uses the broadcasting rules of numpy. The data type of the output of vectorized is determined by calling the function with the first element of the input.

What is a sliding window algorithm?

The Sliding Window algorithm is one way programmers can move towards simplicity in their code. This algorithm is exactly as it sounds; a window is formed over some part of data, and this window can slide over the data to capture different portions of it.

Does NumPy vectorize fast?

Again, some have observed vectorize to be faster than normal for loops, but even the NumPy documentation states: “The vectorize function is provided primarily for convenience, not for performance. The implementation is essentially a for loop.”


2 Answers

We can use NumPy broadcasting to create those sliding windowed indices in a vectorized manner. Then, we can simply index into arr_2 with those to create a 3D array and perform element-wise multiplication with 2D array arr_1, which in turn will bring on broadcasting again.

So, we would have a vectorized implementation like so -

W = arr_1.shape[0] # Window size
idx = np.arange(arr_2.shape[0]-W+1)[:,None] + np.arange(W)
out = arr_1*arr_2[idx]

Runtime test and verify results -

In [143]: # Input arrays
     ...: arr_1 = np.random.rand(3,2)
     ...: arr_2 = np.random.rand(10000,2)
     ...: 
     ...: def org_app(arr_1,arr_2):
     ...:     W = arr_1.shape[0] # Window size
     ...:     L = arr_2.shape[0]-W+1
     ...:     out = np.empty((L,W,arr_1.shape[1]))
     ...:     for i in range(L):
     ...:        out[i] = np.multiply(arr_1,arr_2[i:i+W,:])
     ...:     return out
     ...: 
     ...: def vectorized_app(arr_1,arr_2):
     ...:     W = arr_1.shape[0] # Window size
     ...:     idx = np.arange(arr_2.shape[0]-W+1)[:,None] + np.arange(W)
     ...:     return arr_1*arr_2[idx]
     ...: 

In [144]: np.allclose(org_app(arr_1,arr_2),vectorized_app(arr_1,arr_2))
Out[144]: True

In [145]: %timeit org_app(arr_1,arr_2)
10 loops, best of 3: 47.3 ms per loop

In [146]: %timeit vectorized_app(arr_1,arr_2)
1000 loops, best of 3: 1.21 ms per loop
like image 129
Divakar Avatar answered Sep 22 '22 17:09

Divakar


This is a nice case to test the speed of as_strided and Divakar's broadcasting.

In [281]: %%timeit 
     ...: out=np.empty((L,W,arr1.shape[1]))
     ...: for i in range(L):
     ...:    out[i]=np.multiply(arr1,arr2[i:i+W,:])
     ...: 
10 loops, best of 3: 48.9 ms per loop
In [282]: %%timeit
     ...: idx=np.arange(L)[:,None]+np.arange(W)
     ...: out=arr1*arr2[idx]
     ...: 
100 loops, best of 3: 2.18 ms per loop
In [283]: %%timeit
     ...: arr3=as_strided(arr2, shape=(L,W,2), strides=(16,16,8))
     ...: out=arr1*arr3
     ...: 
1000 loops, best of 3: 805 µs per loop

Create Numpy array without enumerating array for more of a comparison of these methods.

like image 25
hpaulj Avatar answered Sep 20 '22 17:09

hpaulj