Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Numpy 2d and 1d array to latex bmatrix

I'm looking for a clean way to migrate numpy arrays to latex bmatrix. It should work for both 2d arrays and horizontal and vertical 1d array.

Example

A = array([[12, 5, 2],
           [20, 4, 8],
           [ 2, 4, 3],
           [ 7, 1,10]])

print A              #2d array
print A[0]           #horizontal array
print A[:,0, None]   #vertical array

array_to_bmatrix(A)
array_to_bmatrix(A[0])
array_to_bmatrix(A[:,0, None])

Out:

[[12  5  2]
 [20  4  8]
 [ 2  4  3]
 [ 7  1 10]]

[12  5  2]

[[12]
 [20]
 [ 2]
 [ 7]]

\begin{bmatrix} 
 12.000 & 5.000 & 2.000 & \\
 20.000 & 4.000 & 8.000 & \\
 2.000 & 4.000 & 3.000 & \\
 7.000 & 1.000 & 10.000 & \\
\end{bmatrix}

\begin{bmatrix} 
 12.000 & 5.000 & 2.000
\end{bmatrix}

\begin{bmatrix} 
 12.000 & \\
 20.000 & \\
 2.000 & \\
 7.000 & \\
\end{bmatrix}

Attempt of solution

def array_to_bmatrix(array):
    begin = '\\begin{bmatrix} \n'
    data = ''
    for line in array:        
        if line.size == 1:
            data = data + ' %.3f &'%line
            data = data + r' \\'
            data = data + '\n'
            continue
        for element in line:
            data = data + ' %.3f &'%element

        data = data + r' \\'
        data = data + '\n'
    end = '\end{bmatrix}'
    print begin + data + end  

This solution works for vertical and 2d arrays, however it outputs horizontal arrays as vertical ones.

array_to_bmatrix(A[0])

Out:

\begin{bmatrix} 
 12.000 & \\
 5.000 & \\
 2.000 & \\
\end{bmatrix}
like image 949
TheMeaningfulEngineer Avatar asked Jun 16 '13 01:06

TheMeaningfulEngineer


People also ask

Can NumPy arrays be modified?

Reshape. There are different ways to change the dimension of an array. Reshape function is commonly used to modify the shape and thus the dimension of an array.

Does Rpy work with NumPy?

rpy2 has features to ease bidirectional communication with numpy .


1 Answers

The __str__ method of the numpy array already does most of the formatting for you. Let's exploit that;

import numpy as np

def bmatrix(a):
    """Returns a LaTeX bmatrix

    :a: numpy array
    :returns: LaTeX bmatrix as a string
    """
    if len(a.shape) > 2:
        raise ValueError('bmatrix can at most display two dimensions')
    lines = str(a).replace('[', '').replace(']', '').splitlines()
    rv = [r'\begin{bmatrix}']
    rv += ['  ' + ' & '.join(l.split()) + r'\\' for l in lines]
    rv +=  [r'\end{bmatrix}']
    return '\n'.join(rv)

A = np.array([[12, 5, 2], [20, 4, 8], [ 2, 4, 3], [ 7, 1, 10]])
print bmatrix(A) + '\n'

B = np.array([[1.2], [3.7], [0.2]])
print bmatrix(B) + '\n'

C = np.array([1.2, 9.3, 0.6, -2.1])
print bmatrix(C) + '\n'

This returns:

\begin{bmatrix}
  12 & 5 & 2\\
  20 & 4 & 8\\
  2 & 4 & 3\\
  7 & 1 & 10\\
\end{bmatrix}

\begin{bmatrix}
  1.2\\
  3.7\\
  0.2\\
\end{bmatrix}

\begin{bmatrix}
  1.2 & 9.3 & 0.6 & -2.1\\
\end{bmatrix}
like image 93
Roland Smith Avatar answered Oct 16 '22 05:10

Roland Smith