Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Using Tensorflow Huber loss in Keras

I am trying to use huber loss in a keras model (writing DQN), but I am getting bad result, I think I am something doing wrong. My is code is below.

model = Sequential()
model.add(Dense(output_dim=64, activation='relu', input_dim=state_dim))
model.add(Dense(output_dim=number_of_actions, activation='linear'))
loss = tf.losses.huber_loss(delta=1.0)
model.compile(loss=loss, opt='sgd')
return model
like image 924
hakaishinbeerus Avatar asked Dec 15 '17 22:12

hakaishinbeerus


Video Answer


1 Answers

I came here with the exact same question. The accepted answer uses logcosh which may have similar properties, but it isn't exactly Huber Loss. Here's how I implemented Huber Loss for Keras (note that I'm using Keras from Tensorflow 1.5).

import numpy as np
import tensorflow as tf

'''
 ' Huber loss.
 ' https://jaromiru.com/2017/05/27/on-using-huber-loss-in-deep-q-learning/
 ' https://en.wikipedia.org/wiki/Huber_loss
'''
def huber_loss(y_true, y_pred, clip_delta=1.0):
  error = y_true - y_pred
  cond  = tf.keras.backend.abs(error) < clip_delta

  squared_loss = 0.5 * tf.keras.backend.square(error)
  linear_loss  = clip_delta * (tf.keras.backend.abs(error) - 0.5 * clip_delta)

  return tf.where(cond, squared_loss, linear_loss)

'''
 ' Same as above but returns the mean loss.
'''
def huber_loss_mean(y_true, y_pred, clip_delta=1.0):
  return tf.keras.backend.mean(huber_loss(y_true, y_pred, clip_delta))

Depending if you want to reduce the loss or the mean of the loss, use the corresponding function above.

like image 130
benbotto Avatar answered Oct 10 '22 16:10

benbotto