I am recently working on using nltk to extract relation from text. so i build a sample text:" Tom is the cofounder of Microsoft." and using following program to test and return nothing. I cannot figure out why.
I'm using NLTK version: 3.2.1, python version: 3.5.2.
Here is my code:
import re
import nltk
from nltk.sem.relextract import extract_rels, rtuple
from nltk.tokenize import sent_tokenize, word_tokenize
def test():
with open('sample.txt', 'r') as f:
sample = f.read() # "Tom is the cofounder of Microsoft"
sentences = sent_tokenize(sample)
tokenized_sentences = [word_tokenize(sentence) for sentence in sentences]
tagged_sentences = [nltk.tag.pos_tag(sentence) for sentence in tokenized_sentences]
OF = re.compile(r'.*\bof\b.*')
for i, sent in enumerate(tagged_sentences):
sent = nltk.chunk.ne_chunk(sent) # ne_chunk method expects one tagged sentence
rels = extract_rels('PER', 'GPE', sent, corpus='ace', pattern=OF, window=10)
for rel in rels:
print('{0:<5}{1}'.format(i, rtuple(rel)))
if __name__ == '__main__':
test()
"Gates was born in Seattle, Washington on October 28, 1955. "
(S (PERSON Gates/NNS) was/VBD born/VBN in/IN (GPE Seattle/NNP) ,/, (GPE Washington/NNP) on/IN October/NNP 28/CD ,/, 1955/CD ./.)
[PER: 'Gates/NNS'] 'was/VBD born/VBN in/IN' [GPE: 'Seattle/NNP']
"Gates was born in Seattle on October 28, 1955. "
The test() retuns nothing.
output is caused by function: semi_rel2reldict(pairs, window=5, trace=False), which returns result only when len(pairs) > 2, and that's why when one sentence with less than three NEs will return None.
Is this a bug or i used NLTK in wrong way?
Firstly, to chunk NEs with ne_chunk
, the idiom would look something like this
>>> from nltk import ne_chunk, pos_tag, word_tokenize
>>> text = "Tom is the cofounder of Microsoft"
>>> chunked = ne_chunk(pos_tag(word_tokenize(text)))
>>> chunked
Tree('S', [Tree('PERSON', [('Tom', 'NNP')]), ('is', 'VBZ'), ('the', 'DT'), ('cofounder', 'NN'), ('of', 'IN'), Tree('ORGANIZATION', [('Microsoft', 'NNP')])])
(see also https://stackoverflow.com/a/31838373/610569)
Next let's look at the extract_rels
function.
def extract_rels(subjclass, objclass, doc, corpus='ace', pattern=None, window=10):
"""
Filter the output of ``semi_rel2reldict`` according to specified NE classes and a filler pattern.
The parameters ``subjclass`` and ``objclass`` can be used to restrict the
Named Entities to particular types (any of 'LOCATION', 'ORGANIZATION',
'PERSON', 'DURATION', 'DATE', 'CARDINAL', 'PERCENT', 'MONEY', 'MEASURE').
"""
When you evoke this function:
extract_rels('PER', 'GPE', sent, corpus='ace', pattern=OF, window=10)
It performs 4 processes sequentially.
subjclass
and objclass
are validi.e. https://github.com/nltk/nltk/blob/develop/nltk/sem/relextract.py#L202 :
if subjclass and subjclass not in NE_CLASSES[corpus]:
if _expand(subjclass) in NE_CLASSES[corpus]:
subjclass = _expand(subjclass)
else:
raise ValueError("your value for the subject type has not been recognized: %s" % subjclass)
if objclass and objclass not in NE_CLASSES[corpus]:
if _expand(objclass) in NE_CLASSES[corpus]:
objclass = _expand(objclass)
else:
raise ValueError("your value for the object type has not been recognized: %s" % objclass)
if corpus == 'ace' or corpus == 'conll2002':
pairs = tree2semi_rel(doc)
elif corpus == 'ieer':
pairs = tree2semi_rel(doc.text) + tree2semi_rel(doc.headline)
else:
raise ValueError("corpus type not recognized")
Now let's see given your input sentence Tom is the cofounder of Microsoft
, what does tree2semi_rel()
returns:
>>> from nltk.sem.relextract import tree2semi_rel, semi_rel2reldict
>>> from nltk import word_tokenize, pos_tag, ne_chunk
>>> text = "Tom is the cofounder of Microsoft"
>>> chunked = ne_chunk(pos_tag(word_tokenize(text)))
>>> tree2semi_rel(chunked)
[[[], Tree('PERSON', [('Tom', 'NNP')])], [[('is', 'VBZ'), ('the', 'DT'), ('cofounder', 'NN'), ('of', 'IN')], Tree('ORGANIZATION', [('Microsoft', 'NNP')])]]
So it returns a list of 2 lists, the first inner list consist of a blank list and the Tree
that contains the "PERSON" tag.
[[], Tree('PERSON', [('Tom', 'NNP')])]
The second list consist of the phrase is the cofounder of
and the Tree
that contains "ORGANIZATION".
Let's move on.
extract_rel
then tries to change the pairs to some sort of relation dictionaryreldicts = semi_rel2reldict(pairs)
If we look what the semi_rel2reldict
function returns with your example sentence, we see that this is where the empty list gets returns:
>>> tree2semi_rel(chunked)
[[[], Tree('PERSON', [('Tom', 'NNP')])], [[('is', 'VBZ'), ('the', 'DT'), ('cofounder', 'NN'), ('of', 'IN')], Tree('ORGANIZATION', [('Microsoft', 'NNP')])]]
>>> semi_rel2reldict(tree2semi_rel(chunked))
[]
So let's look into the code of semi_rel2reldict
https://github.com/nltk/nltk/blob/develop/nltk/sem/relextract.py#L144:
def semi_rel2reldict(pairs, window=5, trace=False):
"""
Converts the pairs generated by ``tree2semi_rel`` into a 'reldict': a dictionary which
stores information about the subject and object NEs plus the filler between them.
Additionally, a left and right context of length =< window are captured (within
a given input sentence).
:param pairs: a pair of list(str) and ``Tree``, as generated by
:param window: a threshold for the number of items to include in the left and right context
:type window: int
:return: 'relation' dictionaries whose keys are 'lcon', 'subjclass', 'subjtext', 'subjsym', 'filler', objclass', objtext', 'objsym' and 'rcon'
:rtype: list(defaultdict)
"""
result = []
while len(pairs) > 2:
reldict = defaultdict(str)
reldict['lcon'] = _join(pairs[0][0][-window:])
reldict['subjclass'] = pairs[0][1].label()
reldict['subjtext'] = _join(pairs[0][1].leaves())
reldict['subjsym'] = list2sym(pairs[0][1].leaves())
reldict['filler'] = _join(pairs[1][0])
reldict['untagged_filler'] = _join(pairs[1][0], untag=True)
reldict['objclass'] = pairs[1][1].label()
reldict['objtext'] = _join(pairs[1][1].leaves())
reldict['objsym'] = list2sym(pairs[1][1].leaves())
reldict['rcon'] = _join(pairs[2][0][:window])
if trace:
print("(%s(%s, %s)" % (reldict['untagged_filler'], reldict['subjclass'], reldict['objclass']))
result.append(reldict)
pairs = pairs[1:]
return result
The first thing that semi_rel2reldict()
does is to check where there are more than 2 elements the output from tree2semi_rel()
, which your example sentence doesn't:
>>> tree2semi_rel(chunked)
[[[], Tree('PERSON', [('Tom', 'NNP')])], [[('is', 'VBZ'), ('the', 'DT'), ('cofounder', 'NN'), ('of', 'IN')], Tree('ORGANIZATION', [('Microsoft', 'NNP')])]]
>>> len(tree2semi_rel(chunked))
2
>>> len(tree2semi_rel(chunked)) > 2
False
Ah ha, that's why the extract_rel
is returning nothing.
Now comes the question of how to make extract_rel()
return something even with 2 elements from tree2semi_rel()
? Is that even possible?
Let's try a different sentence:
>>> text = "Tom is the cofounder of Microsoft and now he is the founder of Marcohard"
>>> chunked = ne_chunk(pos_tag(word_tokenize(text)))
>>> chunked
Tree('S', [Tree('PERSON', [('Tom', 'NNP')]), ('is', 'VBZ'), ('the', 'DT'), ('cofounder', 'NN'), ('of', 'IN'), Tree('ORGANIZATION', [('Microsoft', 'NNP')]), ('and', 'CC'), ('now', 'RB'), ('he', 'PRP'), ('is', 'VBZ'), ('the', 'DT'), ('founder', 'NN'), ('of', 'IN'), Tree('PERSON', [('Marcohard', 'NNP')])])
>>> tree2semi_rel(chunked)
[[[], Tree('PERSON', [('Tom', 'NNP')])], [[('is', 'VBZ'), ('the', 'DT'), ('cofounder', 'NN'), ('of', 'IN')], Tree('ORGANIZATION', [('Microsoft', 'NNP')])], [[('and', 'CC'), ('now', 'RB'), ('he', 'PRP'), ('is', 'VBZ'), ('the', 'DT'), ('founder', 'NN'), ('of', 'IN')], Tree('PERSON', [('Marcohard', 'NNP')])]]
>>> len(tree2semi_rel(chunked)) > 2
True
>>> semi_rel2reldict(tree2semi_rel(chunked))
[defaultdict(<type 'str'>, {'lcon': '', 'untagged_filler': 'is the cofounder of', 'filler': 'is/VBZ the/DT cofounder/NN of/IN', 'objsym': 'microsoft', 'objclass': 'ORGANIZATION', 'objtext': 'Microsoft/NNP', 'subjsym': 'tom', 'subjclass': 'PERSON', 'rcon': 'and/CC now/RB he/PRP is/VBZ the/DT', 'subjtext': 'Tom/NNP'})]
But that only confirms that extract_rel
can't extract when tree2semi_rel
returns pairs of < 2. What happens if we remove that condition of while len(pairs) > 2
?
Why can't we do while len(pairs) > 1
?
If we look closer into the code, we see the last line of populating the reldict, https://github.com/nltk/nltk/blob/develop/nltk/sem/relextract.py#L169:
reldict['rcon'] = _join(pairs[2][0][:window])
It tries to access a 3rd element of the pairs
and if the length of the pairs
is 2, you'll get an IndexError
.
So what happens if we remove that rcon
key and simply change it to while len(pairs) >= 2
?
To do that we have to override the semi_rel2redict()
function:
>>> from nltk.sem.relextract import _join, list2sym
>>> from collections import defaultdict
>>> def semi_rel2reldict(pairs, window=5, trace=False):
... """
... Converts the pairs generated by ``tree2semi_rel`` into a 'reldict': a dictionary which
... stores information about the subject and object NEs plus the filler between them.
... Additionally, a left and right context of length =< window are captured (within
... a given input sentence).
... :param pairs: a pair of list(str) and ``Tree``, as generated by
... :param window: a threshold for the number of items to include in the left and right context
... :type window: int
... :return: 'relation' dictionaries whose keys are 'lcon', 'subjclass', 'subjtext', 'subjsym', 'filler', objclass', objtext', 'objsym' and 'rcon'
... :rtype: list(defaultdict)
... """
... result = []
... while len(pairs) >= 2:
... reldict = defaultdict(str)
... reldict['lcon'] = _join(pairs[0][0][-window:])
... reldict['subjclass'] = pairs[0][1].label()
... reldict['subjtext'] = _join(pairs[0][1].leaves())
... reldict['subjsym'] = list2sym(pairs[0][1].leaves())
... reldict['filler'] = _join(pairs[1][0])
... reldict['untagged_filler'] = _join(pairs[1][0], untag=True)
... reldict['objclass'] = pairs[1][1].label()
... reldict['objtext'] = _join(pairs[1][1].leaves())
... reldict['objsym'] = list2sym(pairs[1][1].leaves())
... reldict['rcon'] = []
... if trace:
... print("(%s(%s, %s)" % (reldict['untagged_filler'], reldict['subjclass'], reldict['objclass']))
... result.append(reldict)
... pairs = pairs[1:]
... return result
...
>>> text = "Tom is the cofounder of Microsoft"
>>> chunked = ne_chunk(pos_tag(word_tokenize(text)))
>>> tree2semi_rel(chunked)
[[[], Tree('PERSON', [('Tom', 'NNP')])], [[('is', 'VBZ'), ('the', 'DT'), ('cofounder', 'NN'), ('of', 'IN')], Tree('ORGANIZATION', [('Microsoft', 'NNP')])]]
>>> semi_rel2reldict(tree2semi_rel(chunked))
[defaultdict(<type 'str'>, {'lcon': '', 'untagged_filler': 'is the cofounder of', 'filler': 'is/VBZ the/DT cofounder/NN of/IN', 'objsym': 'microsoft', 'objclass': 'ORGANIZATION', 'objtext': 'Microsoft/NNP', 'subjsym': 'tom', 'subjclass': 'PERSON', 'rcon': [], 'subjtext': 'Tom/NNP'})]
Ah! It works but there's still a 4th step in extract_rels()
.
pattern
parameter, https://github.com/nltk/nltk/blob/develop/nltk/sem/relextract.py#L222:relfilter = lambda x: (x['subjclass'] == subjclass and
len(x['filler'].split()) <= window and
pattern.match(x['filler']) and
x['objclass'] == objclass)
Now let's try it with the hacked version of semi_rel2reldict
:
>>> text = "Tom is the cofounder of Microsoft"
>>> chunked = ne_chunk(pos_tag(word_tokenize(text)))
>>> tree2semi_rel(chunked)
[[[], Tree('PERSON', [('Tom', 'NNP')])], [[('is', 'VBZ'), ('the', 'DT'), ('cofounder', 'NN'), ('of', 'IN')], Tree('ORGANIZATION', [('Microsoft', 'NNP')])]]
>>> semi_rel2reldict(tree2semi_rel(chunked))
[defaultdict(<type 'str'>, {'lcon': '', 'untagged_filler': 'is the cofounder of', 'filler': 'is/VBZ the/DT cofounder/NN of/IN', 'objsym': 'microsoft', 'objclass': 'ORGANIZATION', 'objtext': 'Microsoft/NNP', 'subjsym': 'tom', 'subjclass': 'PERSON', 'rcon': [], 'subjtext': 'Tom/NNP'})]
>>>
>>> pattern = re.compile(r'.*\bof\b.*')
>>> reldicts = semi_rel2reldict(tree2semi_rel(chunked))
>>> relfilter = lambda x: (x['subjclass'] == subjclass and
... len(x['filler'].split()) <= window and
... pattern.match(x['filler']) and
... x['objclass'] == objclass)
>>> relfilter
<function <lambda> at 0x112e591b8>
>>> subjclass = 'PERSON'
>>> objclass = 'ORGANIZATION'
>>> window = 5
>>> list(filter(relfilter, reldicts))
[defaultdict(<type 'str'>, {'lcon': '', 'untagged_filler': 'is the cofounder of', 'filler': 'is/VBZ the/DT cofounder/NN of/IN', 'objsym': 'microsoft', 'objclass': 'ORGANIZATION', 'objtext': 'Microsoft/NNP', 'subjsym': 'tom', 'subjclass': 'PERSON', 'rcon': [], 'subjtext': 'Tom/NNP'})]
It works! Now let's see it in tuple form:
>>> from nltk.sem.relextract import rtuple
>>> rels = list(filter(relfilter, reldicts))
>>> for rel in rels:
... print rtuple(rel)
...
[PER: 'Tom/NNP'] 'is/VBZ the/DT cofounder/NN of/IN' [ORG: 'Microsoft/NNP']
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With