I have 2 pandas Dataframes as follows.
DF1:
Security     ISIN
ABC           I1 
DEF           I2
JHK           I3
LMN           I4
OPQ           I5
and DF2:
ISIN      Value
 I2        100
 I3        200
 I5        300
I would like to end up with a third dataframe looking like this:
DF3:
Security   Value
 DEF       100
 JHK       200
 OPQ       300
                You can use merge, by default is inner join, so how=inner is omit and if there is only one common column in both Dataframes, you can also omit parameter on='ISIN':
df3 = pd.merge(df1, df2)
#remove column ISIN
df3.drop('ISIN', axis=1, inplace=True)
print (df3)
  Security  Value
0      DEF    100
1      JHK    200
2      OPQ    300
Or map column ISIN by Series from df1:
print (df1.set_index('ISIN')['Security'])
ISIN
I1    ABC
I2    DEF
I3    JHK
I4    LMN
I5    OPQ
Name: Security, dtype: object
#create new df by copy of df2
df3 = df2.copy()
df3['Security'] = df3.ISIN.map(df1.set_index('ISIN')['Security'])
#remove column ISIN
df3.drop('ISIN', axis=1, inplace=True)
#change order of columns
df3 = df3[['Security','Value']]
print (df3)
  Security  Value
0      DEF    100
1      JHK    200
2      OPQ    300
                        You can use pd.merge to automatically do an inner join on ISIN. The following line of code should get you going:
df3 = pd.merge(df1, df2)[['Security', 'Value']]
Which results in df3:
  Security  Value
0      DEF    100
1      JHK    200
2      OPQ    300
The fully reproducible code sample looks like:
import pandas as pd
df1 = pd.DataFrame({
        'Security': ['ABC', 'DEF', 'JHK', 'LMN', 'OPQ'],
        'ISIN' : ['I1', 'I2', 'I3', 'I4', 'I5']
    })
df2 = pd.DataFrame({
        'Value': [100, 200, 300],
        'ISIN' : ['I2', 'I3', 'I5']
    })
df3 = pd.merge(df1, df2)[['Security', 'Value']]
print(df3)
                        If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With