I have 2 pandas Dataframes as follows.
DF1:
Security ISIN
ABC I1
DEF I2
JHK I3
LMN I4
OPQ I5
and DF2:
ISIN Value
I2 100
I3 200
I5 300
I would like to end up with a third dataframe looking like this:
DF3:
Security Value
DEF 100
JHK 200
OPQ 300
You can use merge
, by default is inner join, so how=inner
is omit and if there is only one common column in both Dataframes
, you can also omit parameter on='ISIN'
:
df3 = pd.merge(df1, df2)
#remove column ISIN
df3.drop('ISIN', axis=1, inplace=True)
print (df3)
Security Value
0 DEF 100
1 JHK 200
2 OPQ 300
Or map
column ISIN
by Series
from df1
:
print (df1.set_index('ISIN')['Security'])
ISIN
I1 ABC
I2 DEF
I3 JHK
I4 LMN
I5 OPQ
Name: Security, dtype: object
#create new df by copy of df2
df3 = df2.copy()
df3['Security'] = df3.ISIN.map(df1.set_index('ISIN')['Security'])
#remove column ISIN
df3.drop('ISIN', axis=1, inplace=True)
#change order of columns
df3 = df3[['Security','Value']]
print (df3)
Security Value
0 DEF 100
1 JHK 200
2 OPQ 300
You can use pd.merge
to automatically do an inner join on ISIN
. The following line of code should get you going:
df3 = pd.merge(df1, df2)[['Security', 'Value']]
Which results in df3
:
Security Value
0 DEF 100
1 JHK 200
2 OPQ 300
The fully reproducible code sample looks like:
import pandas as pd
df1 = pd.DataFrame({
'Security': ['ABC', 'DEF', 'JHK', 'LMN', 'OPQ'],
'ISIN' : ['I1', 'I2', 'I3', 'I4', 'I5']
})
df2 = pd.DataFrame({
'Value': [100, 200, 300],
'ISIN' : ['I2', 'I3', 'I5']
})
df3 = pd.merge(df1, df2)[['Security', 'Value']]
print(df3)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With