I am trying to define a family of state machines with somewhat different kinds of states. In particular, the more "complex" state machines have states which are formed by combining the states of simpler state machines.
(This is similar to an object oriented setting where an object has several attributes which are also objects.)
Here is a simplified example of what I want to achieve.
data InnerState = MkInnerState { _innerVal :: Int }
data OuterState = MkOuterState { _outerTrigger :: Bool, _inner :: InnerState }
innerStateFoo :: Monad m => StateT InnerState m Int
innerStateFoo = do
i <- _innerVal <$> get
put $ MkInnerState (i + 1)
return i
outerStateFoo :: Monad m => StateT OuterState m Int
outerStateFoo = do
b <- _outerTrigger <$> get
if b
then
undefined
-- Here I want to "invoke" innerStateFoo
-- which should work/mutate things
-- "as expected" without
-- having to know about the outerState it
-- is wrapped in
else
return 666
More generally, I want a generalized framework where these nestings are more complex. Here is something I wish to know how to do.
class LegalState s
data StateLess
data StateWithTrigger where
StateWithTrigger :: LegalState s => Bool -- if this trigger is `True`, I want to use
-> s -- this state machine
-> StateWithTrigger
data CombinedState where
CombinedState :: LegalState s => [s] -- Here is a list of state machines.
-> CombinedState -- The combinedstate state machine runs each of them
instance LegalState StateLess
instance LegalState StateWithTrigger
instance LegalState CombinedState
liftToTrigger :: Monad m, LegalState s => StateT s m o -> StateT StateWithTrigger m o
liftToCombine :: Monad m, LegalState s => [StateT s m o] -> StateT CombinedState m o
For context, this is what I want to achieve with this machinery:
I want to design these things called "Stream Transformers", which are basically stateful functions: They consume a token, mutate their internal state and output something. Specifically, I am interested in a class of Stream Transformers where the output is a Boolean value; we will call these "monitors".
Now, I am trying to design combinators for these objects. Some of them are:
pre
combinator. Suppose that mon
is a monitor. Then, pre mon
is a monitor which always produces False
after the first token is consumed and then mimicks the behaviour of mon
as if the previous token is being inserted now. I would want to model the state of pre mon
with StateWithTrigger
in the example above since the new state is a boolean along with the original state.and
combinator. Suppose that m1
and m2
are monitors. Then, m1 `and` m2
is a monitor which feeds the token to m1, and then to m2, and then produces True
if both of the answers were true. I would want to model the state of m1 `and` m2
with CombinedState
in the example above since the state of both monitors must be maintained.For context, this is what I want to achieve with this machinery:
I want to design these things called "Stream Transformers", which are basically stateful functions: They consume a token, mutate their internal state and output something. Specifically, I am interested in a class of Stream Transformers where the output is a Boolean value; we will call these "monitors".
I think that what you want to achieve doesn't need very much machinery.
newtype StreamTransformer input output = StreamTransformer
{ runStreamTransformer :: input -> (output, StreamTransformer input output)
}
type Monitor input = StreamTransformer input Bool
pre :: Monitor input -> Monitor input
pre st = StreamTransformer $ \i ->
-- NB: the first output of the stream transformer vanishes.
-- Is that OK? Maybe this representation doesn't fit the spec?
let (_, st') = runStreamTransformer st i
in (False, st')
and :: Monitor input -> Monitor input -> Monitor input
and left right = StreamTransformer $ \i ->
let (bleft, mleft) = runStreamTransformer left i
(bright, mright) = runStreamTransformer right i
in (bleft && bright, mleft `and` mright)
This StreamTransformer
is not necessarily stateful, but admits stateful ones. You don't need to (and IMO should not! in most cases!!) reach for typeclasses in order to define these (or indeed ever! :) but that's another topic).
notStateful :: StreamTransformer input ()
notStateful = StreamTransformer $ \_ -> ((), notStateful)
stateful :: s -> (input -> s -> (output, s)) -> StreamTransformer input output
stateful s k = StreamTransformer $ \input ->
let (output, s') = k input s
in (output, stateful s' k)
alternateBool :: Monitor anything
alternateBool = stateful True $ \_ s -> (s, not s)
For your first question, as Carl mentioned, zoom
from lens
does exactly what you want. Your code with lenses could be written like this:
{-# LANGUAGE TemplateHaskell #-}
import Control.Lens
import Control.Monad.State.Lazy
newtype InnerState = MkInnerState { _innerVal :: Int }
deriving (Eq, Ord, Read, Show)
data OuterState = MkOuterState
{ _outerTrigger :: Bool
, _inner :: InnerState
} deriving (Eq, Ord, Read, Show)
makeLenses ''InnerState
makeLenses ''OuterState
innerStateFoo :: Monad m => StateT InnerState m Int
innerStateFoo = do
i <- gets _innerVal
put $ MkInnerState (i + 1)
return i
outerStateFoo :: Monad m => StateT OuterState m Int
outerStateFoo = do
b <- gets _outerTrigger
if b
then zoom inner $ innerStateFoo
else pure 666
Edit: While we're at it, if you're already bringing in lens
then innerStateFoo
can be written like so:
innerStateFoo :: Monad m => StateT InnerState m Int
innerStateFoo = innerVal <<+= 1
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With