I need to compute a "best value" for each row of some columns of a data.table
. The best value for each row is the value of the first non-NA column in the given order of selected columns.
As a requirement, the columns to include may vary by order or number. In addition, the name of the column giving the best value should be stored for each row.
With
library(data.table)
library(magrittr)
n <- 7
set.seed(1234)
dt <- sample.int(100, n*5, replace = TRUE) %>%
ifelse(. < 35, NA, .) %>%
matrix(, nrow = n) %>%
as.data.table()
the sample data.table
is
V1 V2 V3 V4 V5
1: NA NA NA NA 84
2: 63 67 84 NA NA
3: 61 52 NA NA 46
4: 63 70 NA NA NA
5: 87 55 NA 82 NA
6: 65 NA NA 53 51
7: NA 93 NA 92 NA
The columns to be included in the given order are
selected_cols <- c("V3", "V4", "V1")
ifelse
The hardcoded version
dt[, best_value := ifelse(!is.na(V3), V3, ifelse(!is.na(V4), V4, V1))]
will give the expected result for the best value
V1 V2 V3 V4 V5 best_value
1: NA NA NA NA 84 NA
2: 63 67 84 NA NA 84
3: 61 52 NA NA 46 61
4: 63 70 NA NA NA 63
5: 87 55 NA 82 NA 82
6: 65 NA NA 53 51 53
7: NA 93 NA 92 NA 92
but it still doesn't show from which of the columns the best value was taken.
In row 2 column V3
already has a non-NA value. For rows 5, 6, and 7, the values from column V4
are taken. Finally, column V1
gives the values for rows 3 and 4 where both V3
and V4
are NA. Row 1 contains a NA because all columns under consideration are NA.
for
loopUsing a for
loop over the selected columns and some data.table
features
dt[, best_value := NA_integer_]
dt[, best_col := NA_character_]
for (x in selected_cols) {
dt[is.na(best_value), best_col := ifelse(!is.na(.SD), names(.SD), NA), .SDcols = x]
dt[is.na(best_value), best_value:= .SD, .SDcols = x]
}
we get the full expected result
V1 V2 V3 V4 V5 best_value best_col
1: NA NA NA NA 84 NA NA
2: 63 67 84 NA NA 84 V3
3: 61 52 NA NA 46 61 V1
4: 63 70 NA NA NA 63 V1
5: 87 55 NA 82 NA 82 V4
6: 65 NA NA 53 51 53 V4
7: NA 93 NA 92 NA 92 V4
In addition, the vector of columns to be included can be changed easily.
However, the approach with a for
loop with two statements looks rather clumsy to me and not very data.table
-like.
Is there a better way to achieve these result with data.table
or dplyr
or even in base R?
Working on your 'for' loop and taking advantage of the list
- data.table
structure:
ans_col = rep_len(NA_character_, nrow(dt))
ans_val = rep_len(NA_real_, nrow(dt))
for(col in selected_cols) {
i = is.na(ans_col) & (!is.na(dt[[col]]))
ans_col[i] = col
ans_val[i] = dt[[col]][i]
}
data.frame(ans_val, ans_col)
# ans_val ans_col
#1 NA <NA>
#2 84 V3
#3 61 V1
#4 63 V1
#5 82 V4
#6 53 V4
#7 92 V4
We specify the 'selected_cols' in .SDcols
, grouped by sequence of rows, we unlist
the Subset of Data.table (unlist(.SD)
), get the index of the first non-NA value ('j1'), use that to get the 'v1' corresponding to the index and the column names, assign (:=
) to create two new columns.
dt[, c("best_val", "best_col") := {v1 <- unlist(.SD)
j1 <- which(!is.na(v1))[1]
list(v1[j1], names(.SD)[j1]) },
.SDcols = selected_cols, by = 1:nrow(dt)]
dt
# V1 V2 V3 V4 V5 best_val best_col
#1: NA NA NA NA 84 NA NA
#2: 63 67 84 NA NA 84 V3
#3: 61 52 NA NA 46 61 V1
#4: 63 70 NA NA NA 63 V1
#5: 87 55 NA 82 NA 82 V4
#6: 65 NA NA 53 51 53 V4
#7: NA 93 NA 92 NA 92 V4
If we are using base R
, row/column indexing can be used with max.col
setDF(dt)
j1 <- max.col(!is.na(dt[selected_cols]), "first")
best_value <- dt[selected_cols][cbind(1:nrow(dt),j1)]
best_value
#[1] NA 84 61 63 82 53 92
j2 <- j1*NA^(!rowSums(!is.na(dt[selected_cols])))
best_col <- selected_cols[j2]
best_col
#[1] NA "V3" "V1" "V1" "V4" "V4" "V4"
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With