I wanted to check if there is any pre-existing trick for na.locf
(from zoo
package), rle
and inverse.rle
in RCpp
?
I wrote a loop to implement, e.g. I did the implementation of na.locf(x, na.rm=FALSE, fromLast=FALSE)
as follows:
#include <Rcpp.h>
using namespace Rcpp;
//[[Rcpp::export]]
NumericVector naLocf(NumericVector x) {
int n=x.size();
for (int i=1;i<n;i++) {
if (R_IsNA(x[i]) & !R_IsNA(x[i-1])) {
x[i]=x[i-1];
}
}
return x;
}
I was just wondering that since these are quite basic functions, someone might have already implemented them in RCpp
in a better way (may be avoid the loop) OR a faster way?
The only thing I'd say is that you are testing for NA
twice for each value when you only need to do it once. Testing for NA
is not a free operation. Perhaps something like this:
//[[Rcpp::export]]
NumericVector naLocf(NumericVector x) {
int n = x.size() ;
double v = x[0]
for( int i=1; i<n; i++){
if( NumericVector::is_na(x[i]) ) {
x[i] = v ;
} else {
v = x[i] ;
}
}
return x;
}
This still however does unnecessary things, like setting v
every time when we could only do it for the last time we don't see NA
. We can try something like this:
//[[Rcpp::export]]
NumericVector naLocf3(NumericVector x) {
double *p=x.begin(), *end = x.end() ;
double v = *p ; p++ ;
while( p < end ){
while( p<end && !NumericVector::is_na(*p) ) p++ ;
v = *(p-1) ;
while( p<end && NumericVector::is_na(*p) ) {
*p = v ;
p++ ;
}
}
return x;
}
Now, we can try some benchmarks:
x <- rnorm(1e6)
x[sample(1:1e6, 1000)] <- NA
require(microbenchmark)
microbenchmark( naLocf1(x), naLocf2(x), naLocf3(x) )
# Unit: milliseconds
# expr min lq median uq max neval
# naLocf1(x) 6.296135 6.323142 6.339132 6.354798 6.749864 100
# naLocf2(x) 4.097829 4.123418 4.139589 4.151527 4.266292 100
# naLocf3(x) 3.467858 3.486582 3.507802 3.521673 3.569041 100
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With