The great circle formula is given by: d = rcos-1[cos a cos b cos(x-y) + sin a sin b]. Given: r = 4.7 km or 4700 m, a, b= 45°, 32° and x, y = 24°,17°.
Heres is MySQL query and function which use to get distance between two latitude and longitude and distance will return in KM. SELECT getDistance($lat1,$lng1,$lat2,$lng2) as distance FROM your_table. Almost a decade later, this function gives THE SAME results as Google Maps distance measurement. Thank you!
Euclidean Distance = SquareRoot(((x2-x1)^2)+((y2-y1)^2)) SquareRoot can be written as (something)^(0.5) I implemented like that. CAST(ROUND(LONG_W ,4) as numeric(36,4)) is for taking value upto 4 decimal point.
From Google Code FAQ - Creating a Store Locator with PHP, MySQL & Google Maps:
Here's the SQL statement that will find the closest 20 locations that are within a radius of 25 miles to the 37, -122 coordinate. It calculates the distance based on the latitude/longitude of that row and the target latitude/longitude, and then asks for only rows where the distance value is less than 25, orders the whole query by distance, and limits it to 20 results. To search by kilometers instead of miles, replace 3959 with 6371.
SELECT id, ( 3959 * acos( cos( radians(37) ) * cos( radians( lat ) )
* cos( radians( lng ) - radians(-122) ) + sin( radians(37) ) * sin(radians(lat)) ) ) AS distance
FROM markers
HAVING distance < 25
ORDER BY distance
LIMIT 0 , 20;
$greatCircleDistance = acos( cos($latitude0) * cos($latitude1) * cos($longitude0 - $longitude1) + sin($latitude0) * sin($latitude1));
with latitude and longitude in radian.
so
SELECT
acos(
cos(radians( $latitude0 ))
* cos(radians( $latitude1 ))
* cos(radians( $longitude0 ) - radians( $longitude1 ))
+ sin(radians( $latitude0 ))
* sin(radians( $latitude1 ))
) AS greatCircleDistance
FROM yourTable;
is your SQL query
to get your results in Km or miles, multiply the result with the mean radius of Earth (3959
miles,6371
Km or 3440
nautical miles)
The thing you are calculating in your example is a bounding box. If you put your coordinate data in a spatial enabled MySQL column, you can use MySQL's build in functionality to query the data.
SELECT
id
FROM spatialEnabledTable
WHERE
MBRWithin(ogc_point, GeomFromText('Polygon((0 0,0 3,3 3,3 0,0 0))'))
If you add helper fields to the coordinates table, you can improve response time of the query.
Like this:
CREATE TABLE `Coordinates` (
`id` INT(10) UNSIGNED NOT NULL COMMENT 'id for the object',
`type` TINYINT(4) UNSIGNED NOT NULL DEFAULT '0' COMMENT 'type',
`sin_lat` FLOAT NOT NULL COMMENT 'sin(lat) in radians',
`cos_cos` FLOAT NOT NULL COMMENT 'cos(lat)*cos(lon) in radians',
`cos_sin` FLOAT NOT NULL COMMENT 'cos(lat)*sin(lon) in radians',
`lat` FLOAT NOT NULL COMMENT 'latitude in degrees',
`lon` FLOAT NOT NULL COMMENT 'longitude in degrees',
INDEX `lat_lon_idx` (`lat`, `lon`)
)
If you're using TokuDB, you'll get even better performance if you add clustering indexes on either of the predicates, for example, like this:
alter table Coordinates add clustering index c_lat(lat);
alter table Coordinates add clustering index c_lon(lon);
You'll need the basic lat and lon in degrees as well as sin(lat) in radians, cos(lat)*cos(lon) in radians and cos(lat)*sin(lon) in radians for each point. Then you create a mysql function, smth like this:
CREATE FUNCTION `geodistance`(`sin_lat1` FLOAT,
`cos_cos1` FLOAT, `cos_sin1` FLOAT,
`sin_lat2` FLOAT,
`cos_cos2` FLOAT, `cos_sin2` FLOAT)
RETURNS float
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
SQL SECURITY INVOKER
BEGIN
RETURN acos(sin_lat1*sin_lat2 + cos_cos1*cos_cos2 + cos_sin1*cos_sin2);
END
This gives you the distance.
Don't forget to add an index on lat/lon so the bounding boxing can help the search instead of slowing it down (the index is already added in the CREATE TABLE query above).
INDEX `lat_lon_idx` (`lat`, `lon`)
Given an old table with only lat/lon coordinates, you can set up a script to update it like this: (php using meekrodb)
$users = DB::query('SELECT id,lat,lon FROM Old_Coordinates');
foreach ($users as $user)
{
$lat_rad = deg2rad($user['lat']);
$lon_rad = deg2rad($user['lon']);
DB::replace('Coordinates', array(
'object_id' => $user['id'],
'object_type' => 0,
'sin_lat' => sin($lat_rad),
'cos_cos' => cos($lat_rad)*cos($lon_rad),
'cos_sin' => cos($lat_rad)*sin($lon_rad),
'lat' => $user['lat'],
'lon' => $user['lon']
));
}
Then you optimize the actual query to only do the distance calculation when really needed, for example by bounding the circle (well, oval) from inside and outside. For that, you'll need to precalculate several metrics for the query itself:
// assuming the search center coordinates are $lat and $lon in degrees
// and radius in km is given in $distance
$lat_rad = deg2rad($lat);
$lon_rad = deg2rad($lon);
$R = 6371; // earth's radius, km
$distance_rad = $distance/$R;
$distance_rad_plus = $distance_rad * 1.06; // ovality error for outer bounding box
$dist_deg_lat = rad2deg($distance_rad_plus); //outer bounding box
$dist_deg_lon = rad2deg($distance_rad_plus/cos(deg2rad($lat)));
$dist_deg_lat_small = rad2deg($distance_rad/sqrt(2)); //inner bounding box
$dist_deg_lon_small = rad2deg($distance_rad/cos(deg2rad($lat))/sqrt(2));
Given those preparations, the query goes something like this (php):
$neighbors = DB::query("SELECT id, type, lat, lon,
geodistance(sin_lat,cos_cos,cos_sin,%d,%d,%d) as distance
FROM Coordinates WHERE
lat BETWEEN %d AND %d AND lon BETWEEN %d AND %d
HAVING (lat BETWEEN %d AND %d AND lon BETWEEN %d AND %d) OR distance <= %d",
// center radian values: sin_lat, cos_cos, cos_sin
sin($lat_rad),cos($lat_rad)*cos($lon_rad),cos($lat_rad)*sin($lon_rad),
// min_lat, max_lat, min_lon, max_lon for the outside box
$lat-$dist_deg_lat,$lat+$dist_deg_lat,
$lon-$dist_deg_lon,$lon+$dist_deg_lon,
// min_lat, max_lat, min_lon, max_lon for the inside box
$lat-$dist_deg_lat_small,$lat+$dist_deg_lat_small,
$lon-$dist_deg_lon_small,$lon+$dist_deg_lon_small,
// distance in radians
$distance_rad);
EXPLAIN on the above query might say that it's not using index unless there's enough results to trigger such. The index will be used when there's enough data in the coordinates table. You can add FORCE INDEX (lat_lon_idx) to the SELECT to make it use the index with no regards to the table size, so you can verify with EXPLAIN that it is working correctly.
With the above code samples you should have a working and scalable implementation of object search by distance with minimal error.
I have had to work this out in some detail, so I'll share my result. This uses a zip
table with latitude
and longitude
tables. It doesn't depend on Google Maps; rather you can adapt it to any table containing lat/long.
SELECT zip, primary_city,
latitude, longitude, distance_in_mi
FROM (
SELECT zip, primary_city, latitude, longitude,r,
(3963.17 * ACOS(COS(RADIANS(latpoint))
* COS(RADIANS(latitude))
* COS(RADIANS(longpoint) - RADIANS(longitude))
+ SIN(RADIANS(latpoint))
* SIN(RADIANS(latitude)))) AS distance_in_mi
FROM zip
JOIN (
SELECT 42.81 AS latpoint, -70.81 AS longpoint, 50.0 AS r
) AS p
WHERE latitude
BETWEEN latpoint - (r / 69)
AND latpoint + (r / 69)
AND longitude
BETWEEN longpoint - (r / (69 * COS(RADIANS(latpoint))))
AND longpoint + (r / (69 * COS(RADIANS(latpoint))))
) d
WHERE distance_in_mi <= r
ORDER BY distance_in_mi
LIMIT 30
Look at this line in the middle of that query:
SELECT 42.81 AS latpoint, -70.81 AS longpoint, 50.0 AS r
This searches for the 30 nearest entries in the zip
table within 50.0 miles of the lat/long point 42.81/-70.81 . When you build this into an app, that's where you put your own point and search radius.
If you want to work in kilometers rather than miles, change 69
to 111.045
and change 3963.17
to 6378.10
in the query.
Here's a detailed writeup. I hope it helps somebody. http://www.plumislandmedia.net/mysql/haversine-mysql-nearest-loc/
SELECT *, (
6371 * acos(cos(radians(search_lat)) * cos(radians(lat) ) *
cos(radians(lng) - radians(search_lng)) + sin(radians(search_lat)) * sin(radians(lat)))
) AS distance
FROM table
WHERE lat != search_lat AND lng != search_lng AND distance < 25
ORDER BY distance
FETCH 10 ONLY
for distance of 25 km
I have written a procedure that can calculate the same, but you have to enter the latitude and longitude in the respective table.
drop procedure if exists select_lattitude_longitude;
delimiter //
create procedure select_lattitude_longitude(In CityName1 varchar(20) , In CityName2 varchar(20))
begin
declare origin_lat float(10,2);
declare origin_long float(10,2);
declare dest_lat float(10,2);
declare dest_long float(10,2);
if CityName1 Not In (select Name from City_lat_lon) OR CityName2 Not In (select Name from City_lat_lon) then
select 'The Name Not Exist or Not Valid Please Check the Names given by you' as Message;
else
select lattitude into origin_lat from City_lat_lon where Name=CityName1;
select longitude into origin_long from City_lat_lon where Name=CityName1;
select lattitude into dest_lat from City_lat_lon where Name=CityName2;
select longitude into dest_long from City_lat_lon where Name=CityName2;
select origin_lat as CityName1_lattitude,
origin_long as CityName1_longitude,
dest_lat as CityName2_lattitude,
dest_long as CityName2_longitude;
SELECT 3956 * 2 * ASIN(SQRT( POWER(SIN((origin_lat - dest_lat) * pi()/180 / 2), 2) + COS(origin_lat * pi()/180) * COS(dest_lat * pi()/180) * POWER(SIN((origin_long-dest_long) * pi()/180 / 2), 2) )) * 1.609344 as Distance_In_Kms ;
end if;
end ;
//
delimiter ;
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With