Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Mutate multiple / consecutive columns (with dplyr or base R)

Tags:

r

dplyr

purrr

I'm trying to create "waves" of variables that represent repeated measures. Specifically, I'm trying to create consecutive variables that represent the mean values for variables 1 - 10, 11 - 20 ... 91-100. Note that the "..." symbolizes the variables for waves 3 through 9, as avoiding typing these is my goal!

Here is an example data frame, df, with 10 rows and 100 columns:

mat <- matrix(runif(1000, 1, 10), ncol = 100)
df <- data.frame(mat)
dim(df)
> 10 100

I've used the dplyr::mutate which works once all the variables are typed, but is time-intensive and prone to mistakes. I have not been able to find a way to do so without resorting to manually typing the names of the columns, as I started doing below (note that "..." symbolizes waves 3 through 9):

df <- df %>% 
      mutate(wave_1 = (X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9 + X10) / 10,
             wave_2 = (X11 + X12 + X13 + X14 + X15 + X16 + X17 + X18 + X19 + X20) / 10,
             ...
             wave_10 = (X91 + X92 + X93 + X94 + X95 + X96 + X97 + X98 + X99 + X100) / 10)

Can you mutate multiple / consecutive columns with 'dplyr'? Other approaches are also welcome.

like image 351
Joshua Rosenberg Avatar asked Dec 20 '15 01:12

Joshua Rosenberg


2 Answers

We can also do it with purrr::map2:

library(purrr)

set.seed(123)
mat <- matrix(runif(1000, 1, 10), ncol = 100)
df <- data.frame(mat)

data.frame(from = seq(10, 100, 10) - 9, 
           to = seq(10, 100, 10)) %>%
  {map2_dfc(.$from, .$to, ~ rowMeans(df[, .x:.y]))} %>%
  set_names(paste0("Wave_", seq_along(.)))

# A tibble: 10 x 10
   Wave_1 Wave_2 Wave_3 Wave_4 Wave_5 Wave_6 Wave_7 Wave_8 Wave_9 Wave_10
    <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>   <dbl>
 1   5.57   6.59   5.75   5.79   6.28   5.67   5.96   6.58   4.37    6.39
 2   6.16   4.53   5.15   4.36   5.73   5.06   7.20   5.66   5.95    3.63
 3   5.94   5.62   4.66   6.65   5.21   6.84   4.98   4.39   6.32    7.42
 4   5.91   5.77   5.55   5.53   5.43   4.25   5.85   6.84   5.65    5.06
 5   4.74   6.04   4.34   4.65   5.65   5.95   4.26   5.31   6.88    6.19
 6   4.39   5.86   6.77   6.46   5.77   6.14   5.90   4.93   5.59    6.61
 7   5.85   5.53   4.88   6.19   5.39   5.13   6.72   4.85   4.96    6.00
 8   5.84   5.24   5.15   3.11   4.23   5.81   4.55   4.65   3.64    4.54
 9   5.63   5.65   4.18   3.94   3.89   7.15   5.78   5.49   4.59    5.55
10   4.83   5.46   7.32   7.62   6.10   4.71   4.00   4.91   5.75    4.03

And also in base R we could do this:

tmp <- split.default(df, ceiling(seq_along(df) / 10))  

as.data.frame(Reduce(function(x, y) {
  cbind(x, rowMeans(tmp[[y]]))
}, 2:length(tmp), init = rowMeans(tmp[[1]]))) |>
  setNames(paste0("wave_", 1:length(tmp)))

     wave_1   wave_2   wave_3   wave_4   wave_5   wave_6   wave_7   wave_8   wave_9  wave_10
1  5.571560 6.587021 5.750900 5.791688 6.279064 5.674091 5.963896 6.583146 4.365665 6.394814
2  6.164837 4.531540 5.153556 4.362311 5.727500 5.056182 7.197980 5.664657 5.947038 3.626209
3  5.937152 5.622390 4.660815 6.652186 5.209772 6.838960 4.977723 4.390910 6.320762 7.420729
4  5.910486 5.766074 5.549177 5.526093 5.434328 4.246362 5.853391 6.841727 5.652275 5.059860
5  4.735269 6.043003 4.335277 4.646320 5.650717 5.954178 4.260801 5.311500 6.884402 6.185179
6  4.391438 5.857648 6.766768 6.460810 5.773092 6.142438 5.902048 4.932962 5.590644 6.614198
7  5.854975 5.531683 4.882462 6.188551 5.390633 5.129840 6.715329 4.850971 4.957175 5.999634
8  5.838495 5.237646 5.145763 3.105511 4.234151 5.813252 4.553210 4.652256 3.637094 4.540835
9  5.632393 5.645221 4.176820 3.942658 3.885425 7.146875 5.778416 5.492009 4.589817 5.545992
10 4.833706 5.458013 7.323117 7.621194 6.100454 4.712570 4.003229 4.914826 5.752216 4.032089
like image 96
Anoushiravan R Avatar answered Nov 15 '22 21:11

Anoushiravan R


Another approach (and IMO the recommended approach) using dplyr would be to first reshape or melt your data into a tidy data format before summarizing the values from each wave.

In detail, this process would involve:

  1. Reshape your data to long format (tidyr::gather)
  2. Identify which variables belong to each "wave"
  3. Summarize values for each wave
  4. Reshape your data back to wide format (tidyr::spread)

In your example, this would look like the following:

library(tidyverse)

mat <- matrix(runif(1000, 1, 10), ncol = 100)
df <- data.frame(mat)
dim(df)

df %>%
  dplyr::mutate(id = dplyr::row_number()) %>%
  # reshape to "tidy data" or long format
  tidyr::gather(varname, value, -id) %>%
  # identify which variables belong to which "wave"
  dplyr::mutate(varnum = as.integer(stringr::str_extract(varname, pattern = '\\d+')),
                wave = floor((varnum-1)/10)+1) %>%
  # summarize your value for each wave
  dplyr::group_by(id, wave) %>%
  dplyr::summarise(avg = sum(value)/n()) %>%
  # reshape back to "wide" format
  tidyr::spread(wave, avg, sep='_') %>%
  dplyr::ungroup()

With the following output:

# A tibble: 10 x 11
      id wave_1 wave_2 wave_3 wave_4 wave_5 wave_6 wave_7 wave_8 wave_9 wave_10
   <int>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>   <dbl>
 1     1   6.24   4.49   5.85   5.43   5.98   6.04   4.83   6.92   5.43    5.52
 2     2   5.16   6.82   5.76   6.66   6.21   5.41   4.58   5.06   5.81    6.93
 3     3   7.23   6.28   5.40   5.70   5.13   6.27   5.55   5.84   6.74    5.94
 4     4   5.27   4.79   4.39   6.85   5.31   6.01   6.15   3.31   5.73    5.63
 5     5   6.48   5.16   5.20   4.71   5.87   4.44   6.40   5.00   5.90    3.78
 6     6   4.18   4.64   5.49   5.47   5.75   6.35   4.34   5.66   5.34    6.57
 7     7   4.97   4.09   6.17   5.78   5.87   6.47   4.96   4.39   5.99    5.35
 8     8   5.50   7.21   5.43   5.15   4.56   5.00   4.86   5.72   6.41    5.65
 9     9   5.27   5.71   5.23   5.44   5.12   5.40   5.38   6.05   5.41    5.30
10    10   5.95   4.58   6.52   5.46   7.63   5.56   5.82   7.03   5.68    5.38

This could be joined back to your original data to match the example you gave (which used mutate) as follows:

df %>%
  dplyr::mutate(id = dplyr::row_number()) %>%
  tidyr::gather(varname, value, -id) %>%
  dplyr::mutate(varnum = as.integer(stringr::str_extract(varname, pattern = '\\d+')),
                wave = floor((varnum-1)/10)+1) %>%
  dplyr::group_by(id, wave) %>%
  dplyr::summarise(avg = sum(value)/n()) %>%
  tidyr::spread(wave, avg, sep='_') %>%
  dplyr::ungroup() %>%
  dplyr::right_join(df %>%    # <-- join back to original data
                     dplyr::mutate(id = dplyr::row_number()),
                   by = 'id')

One nice aspect to this approach is that you can inspect your data to confirm that you are correctly assigning variables to "wave"s.

df %>%
  dplyr::mutate(id = dplyr::row_number()) %>%
  tidyr::gather(varname, value, -id) %>%
  dplyr::mutate(varnum = as.integer(stringr::str_extract(varname, pattern = '\\d+')),
                wave = floor((varnum-1)/10)+1) %>%
  dplyr::distinct(varname, varnum, wave) %>%
  head()

which produces:

  varname varnum wave
1      X1      1    1
2      X2      2    1
3      X3      3    1
4      X4      4    1
5      X5      5    1
6      X6      6    1
like image 21
jackinovik Avatar answered Nov 15 '22 21:11

jackinovik