I have a data set that looks like this.
bankname bankid year totass cash bond loans
Bank A 1 1881 244789 7250 20218 29513
Bank B 2 1881 195755 10243 185151 2800
Bank C 3 1881 107736 13357 177612 NA
Bank D 4 1881 170600 35000 20000 5000
Bank E 5 1881 3200000 351266 314012 NA
and I want to compute some ratios based on bank balance sheets. and I want the dataset to look like this
bankname bankid year totass cash bond loans CashtoAsset BondtoAsset LoanstoAsset
Bank A 1 1881 2447890 7250 202100 951300 0.002 0.082 0.388
Bank B 2 1881 195755 10243 185151 2800 0.052 0.945 0.014
Bank C 3 1881 107736 13357 177612 NA 0.123 1.648585431 NA
Bank D 4 1881 170600 35000 20000 5000 0.205 0.117 0.029
Bank E 5 1881 32000000 351266 314012 NA 0.0109 0.009 NA
Here is the code to replicate the data
bankname <- c("Bank A","Bank B","Bank C","Bank D","Bank E")
bankid <- c( 1, 2, 3, 4, 5)
year<- c( 1881, 1881, 1881, 1881, 1881)
totass <- c(244789, 195755, 107736, 170600, 32000000)
cash<-c(7250,10243,13357,35000,351266)
bond<-c(20218,185151,177612,20000,314012)
loans<-c(29513,2800,NA,5000,NA)
bankdata<-data.frame(bankname, bankid,year,totass, cash, bond, loans)
First, I got rid of NAs in balance sheets.
cols <- c("totass", "cash", "bond", "loans")
bankdata[cols][is.na(bankdata[cols])] <- 0
Then I compute ratios
library(dplyr)
bankdata<-mutate(bankdata,CashtoAsset = cash/totass)
bankdata<-mutate(bankdata,BondtoAsset = bond/totass)
bankdata<-mutate(bankdata,loanstoAsset =loans/totass)
But, instead of computing all these ratios line by line, I want to create a look to do this all at once. In Stata, I would do
foreach x of varlist cash bond loans {
by bankid: gen `x'toAsset = `x'/ totass
}
How would I do this?
To pick out single or multiple columns use the select() function. The select() function expects a dataframe as it's first input ('argument', in R language), followed by the names of the columns you want to extract with a comma between each name.
mutate() can be used to create variables based on existing variables from the dataset. You can also create multiple columns at once, separating each new variable with a comma.
By using group_by() function from dplyr package we can perform group by on multiple columns or variables (two or more columns) and summarise on multiple columns for aggregations.
You can use mutate_at() or the new across() to recode several columns at the same time.
There has been a change. We have been using funs()
in .funs
(funs(name = f(.)
). But this is changed (dplyr 0.8.0 above). Instead of funs
, now we use list
(list(name = ~f(.))
). See the following new examples.
bankdata %>%
mutate_at(.funs = list(toAsset = ~./totass), .vars = vars(cash:loans))
bankdata %>%
mutate_at(.funs = list(toAsset = ~./totass), .vars = c("cash", "bond", "loans"))
bankdata %>%
mutate_at(.funs = list(toAsset = ~./totass), .vars = 5:7)
Since I answered this question, I have realized that some SO users have been checking this answer. The dplyr package has changed since then. Therefore, I leave the following update. I hope this will help some R users to learn how to use mutate_at()
.
mutate_each()
is now deprecated. You want to use mutate_at()
, instead. You can specify which columns you want to apply your function in .vars
. One way is to use vars()
. Another is to use a character vector containing column names, which you want to apply your custom function in .fun
. The other is to specify columns with numbers (e.g., 5:7 in this case). Note that, if you use a column for group_by()
, you need to change the numbers of column positions. Have a look of this question.
bankdata %>%
mutate_at(.funs = funs(toAsset = ./totass), .vars = vars(cash:loans))
bankdata %>%
mutate_at(.funs = funs(toAsset = ./totass), .vars = c("cash", "bond", "loans"))
bankdata %>%
mutate_at(.funs = funs(toAsset = ./totass), .vars = 5:7)
# bankname bankid year totass cash bond loans cash_toAsset bond_toAsset loans_toAsset
#1 Bank A 1 1881 244789 7250 20218 29513 0.02961734 0.082593581 0.12056506
#2 Bank B 2 1881 195755 10243 185151 2800 0.05232561 0.945830247 0.01430359
#3 Bank C 3 1881 107736 13357 177612 NA 0.12397899 1.648585431 NA
#4 Bank D 4 1881 170600 35000 20000 5000 0.20515826 0.117233294 0.02930832
#5 Bank E 5 1881 32000000 351266 314012 NA 0.01097706 0.009812875 NA
I purposely gave toAsset
to the custom function in .fun
since this will help me to arrange new column names. Previously, I used rename()
. But I think it is much easier to clean up column names with gsub()
in the present approach. If the above result is saved as out
, you want to run the following code in order to remove _
in the column names.
names(out) <- gsub(names(out), pattern = "_", replacement = "")
I think you can save some typing in this way with dplyr. The downside is you overwrite cash, bond, and loans.
bankdata %>%
group_by(bankname) %>%
mutate_each(funs(whatever = ./totass), cash:loans)
# bankname bankid year totass cash bond loans
#1 Bank A 1 1881 244789 0.02961734 0.082593581 0.12056506
#2 Bank B 2 1881 195755 0.05232561 0.945830247 0.01430359
#3 Bank C 3 1881 107736 0.12397899 1.648585431 NA
#4 Bank D 4 1881 170600 0.20515826 0.117233294 0.02930832
#5 Bank E 5 1881 32000000 0.01097706 0.009812875 NA
If you prefer your expected outcome, I think some typing is necessary. The renaming part seems to be something you gotta do.
bankdata %>%
group_by(bankname) %>%
summarise_each(funs(whatever = ./totass), cash:loans) %>%
rename(cashtoAsset = cash, bondtoAsset = bond, loanstoAsset = loans) -> ana;
ana %>%
merge(bankdata,., by = "bankname")
# bankname bankid year totass cash bond loans cashtoAsset bondtoAsset loanstoAsset
#1 Bank A 1 1881 244789 7250 20218 29513 0.02961734 0.082593581 0.12056506
#2 Bank B 2 1881 195755 10243 185151 2800 0.05232561 0.945830247 0.01430359
#3 Bank C 3 1881 107736 13357 177612 NA 0.12397899 1.648585431 NA
#4 Bank D 4 1881 170600 35000 20000 5000 0.20515826 0.117233294 0.02930832
#5 Bank E 5 1881 32000000 351266 314012 NA 0.01097706 0.009812875 NA
Here is a data.table
solution.
library(data.table)
setDT(bankdata)
bankdata[, paste0(names(bankdata)[5:7], "toAsset") :=
lapply(.SD, function(x) x/totass), .SDcols=5:7]
bankdata
# bankname bankid year totass cash bond loans cashtoAsset bondtoAsset loanstoAsset
# 1: Bank A 1 1881 244789 7250 20218 29513 0.02961734 0.082593581 0.12056506
# 2: Bank B 2 1881 195755 10243 185151 2800 0.05232561 0.945830247 0.01430359
# 3: Bank C 3 1881 107736 13357 177612 0 0.12397899 1.648585431 0.00000000
# 4: Bank D 4 1881 170600 35000 20000 5000 0.20515826 0.117233294 0.02930832
# 5: Bank E 5 1881 32000000 351266 314012 0 0.01097706 0.009812875 0.00000000
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With