I want to group all the documents according to a field but to restrict the number of documents grouped for each value.
Each message has a conversation_ID. I need to get 10 or lesser number of messages for each conversation_ID.
I am able to group according to the following command but can't figure out how to restrict the
number of grouped documents apart from slicing the results
Message.aggregate({'$group':{_id:'$conversation_ID',msgs:{'$push':{msgid:'$_id'}}}})
How to limit the length of msgs array for each conversation_ID to 10?
Filter MongoDB Array Element Using $Filter Operator This operator uses three variables: input – This represents the array that we want to extract. cond – This represents the set of conditions that must be met. as – This optional field contains a name for the variable that represent each element of the input array.
In aggregate, $limit limits the number of documents sent to the next aggregation state, and $skip skips the first N documents, so if $skip is after $limit and $skip >= $limit, you won't get any results. In short, this is expected behavior in MongoDB.
The $group stage separates documents into groups according to a "group key". The output is one document for each unique group key. A group key is often a field, or group of fields. The group key can also be the result of an expression.
To limit the records in MongoDB, you need to use limit() method. The method accepts one number type argument, which is the number of documents that you want to be displayed.
From MongoDB 3.6 there is a "novel" approach to this by using $lookup
to perform a "self join" in much the same way as the original cursor processing demonstrated below.
Since in this release you can specify a "pipeline"
argument to $lookup
as a source for the "join", this essentially means you can use $match
and $limit
to gather and "limit" the entries for the array:
db.messages.aggregate([
{ "$group": { "_id": "$conversation_ID" } },
{ "$lookup": {
"from": "messages",
"let": { "conversation": "$_id" },
"pipeline": [
{ "$match": { "$expr": { "$eq": [ "$conversation_ID", "$$conversation" ] } }},
{ "$limit": 10 },
{ "$project": { "_id": 1 } }
],
"as": "msgs"
}}
])
You can optionally add additional projection after the $lookup
in order to make the array items simply the values rather than documents with an _id
key, but the basic result is there by simply doing the above.
There is still the outstanding SERVER-9277 which actually requests a "limit to push" directly, but using $lookup
in this way is a viable alternative in the interim.
NOTE: There also is
$slice
which was introduced after writing the original answer and mentioned by "outstanding JIRA issue" in the original content. Whilst you can get the same result with small result sets, it does involve still "pushing everything" into the array and then later limiting the final array output to the desired length.So that's the main distinction and why it's generally not practical to
$slice
for large results. But of course can be alternately used in cases where it is.There are a few more details on mongodb group values by multiple fields about either alternate usage.
As stated earlier, this is not impossible but certainly a horrible problem.
Actually if your main concern is that your resulting arrays are going to be exceptionally large, then you best approach is to submit for each distinct "conversation_ID" as an individual query and then combine your results. In very MongoDB 2.6 syntax which might need some tweaking depending on what your language implementation actually is:
var results = [];
db.messages.aggregate([
{ "$group": {
"_id": "$conversation_ID"
}}
]).forEach(function(doc) {
db.messages.aggregate([
{ "$match": { "conversation_ID": doc._id } },
{ "$limit": 10 },
{ "$group": {
"_id": "$conversation_ID",
"msgs": { "$push": "$_id" }
}}
]).forEach(function(res) {
results.push( res );
});
});
But it all depends on whether that is what you are trying to avoid. So on to the real answer:
The first issue here is that there is no function to "limit" the number of items that are "pushed" into an array. It is certainly something we would like, but the functionality does not presently exist.
The second issue is that even when pushing all items into an array, you cannot use $slice
, or any similar operator in the aggregation pipeline. So there is no present way to get just the "top 10" results from a produced array with a simple operation.
But you can actually produce a set of operations to effectively "slice" on your grouping boundaries. It is fairly involved, and for example here I will reduce the array elements "sliced" to "six" only. The main reason here is to demonstrate the process and show how to do this without being destructive with arrays that do not contain the total you want to "slice" to.
Given a sample of documents:
{ "_id" : 1, "conversation_ID" : 123 }
{ "_id" : 2, "conversation_ID" : 123 }
{ "_id" : 3, "conversation_ID" : 123 }
{ "_id" : 4, "conversation_ID" : 123 }
{ "_id" : 5, "conversation_ID" : 123 }
{ "_id" : 6, "conversation_ID" : 123 }
{ "_id" : 7, "conversation_ID" : 123 }
{ "_id" : 8, "conversation_ID" : 123 }
{ "_id" : 9, "conversation_ID" : 123 }
{ "_id" : 10, "conversation_ID" : 123 }
{ "_id" : 11, "conversation_ID" : 123 }
{ "_id" : 12, "conversation_ID" : 456 }
{ "_id" : 13, "conversation_ID" : 456 }
{ "_id" : 14, "conversation_ID" : 456 }
{ "_id" : 15, "conversation_ID" : 456 }
{ "_id" : 16, "conversation_ID" : 456 }
You can see there that when grouping by your conditions you will get one array with ten elements and another with "five". What you want to do here reduce both to the top "six" without "destroying" the array that only will match to "five" elements.
And the following query:
db.messages.aggregate([
{ "$group": {
"_id": "$conversation_ID",
"first": { "$first": "$_id" },
"msgs": { "$push": "$_id" },
}},
{ "$unwind": "$msgs" },
{ "$project": {
"msgs": 1,
"first": 1,
"seen": { "$eq": [ "$first", "$msgs" ] }
}},
{ "$sort": { "seen": 1 }},
{ "$group": {
"_id": "$_id",
"msgs": {
"$push": {
"$cond": [ { "$not": "$seen" }, "$msgs", false ]
}
},
"first": { "$first": "$first" },
"second": { "$first": "$msgs" }
}},
{ "$unwind": "$msgs" },
{ "$project": {
"msgs": 1,
"first": 1,
"second": 1,
"seen": { "$eq": [ "$second", "$msgs" ] }
}},
{ "$sort": { "seen": 1 }},
{ "$group": {
"_id": "$_id",
"msgs": {
"$push": {
"$cond": [ { "$not": "$seen" }, "$msgs", false ]
}
},
"first": { "$first": "$first" },
"second": { "$first": "$second" },
"third": { "$first": "$msgs" }
}},
{ "$unwind": "$msgs" },
{ "$project": {
"msgs": 1,
"first": 1,
"second": 1,
"third": 1,
"seen": { "$eq": [ "$third", "$msgs" ] },
}},
{ "$sort": { "seen": 1 }},
{ "$group": {
"_id": "$_id",
"msgs": {
"$push": {
"$cond": [ { "$not": "$seen" }, "$msgs", false ]
}
},
"first": { "$first": "$first" },
"second": { "$first": "$second" },
"third": { "$first": "$third" },
"forth": { "$first": "$msgs" }
}},
{ "$unwind": "$msgs" },
{ "$project": {
"msgs": 1,
"first": 1,
"second": 1,
"third": 1,
"forth": 1,
"seen": { "$eq": [ "$forth", "$msgs" ] }
}},
{ "$sort": { "seen": 1 }},
{ "$group": {
"_id": "$_id",
"msgs": {
"$push": {
"$cond": [ { "$not": "$seen" }, "$msgs", false ]
}
},
"first": { "$first": "$first" },
"second": { "$first": "$second" },
"third": { "$first": "$third" },
"forth": { "$first": "$forth" },
"fifth": { "$first": "$msgs" }
}},
{ "$unwind": "$msgs" },
{ "$project": {
"msgs": 1,
"first": 1,
"second": 1,
"third": 1,
"forth": 1,
"fifth": 1,
"seen": { "$eq": [ "$fifth", "$msgs" ] }
}},
{ "$sort": { "seen": 1 }},
{ "$group": {
"_id": "$_id",
"msgs": {
"$push": {
"$cond": [ { "$not": "$seen" }, "$msgs", false ]
}
},
"first": { "$first": "$first" },
"second": { "$first": "$second" },
"third": { "$first": "$third" },
"forth": { "$first": "$forth" },
"fifth": { "$first": "$fifth" },
"sixth": { "$first": "$msgs" },
}},
{ "$project": {
"first": 1,
"second": 1,
"third": 1,
"forth": 1,
"fifth": 1,
"sixth": 1,
"pos": { "$const": [ 1,2,3,4,5,6 ] }
}},
{ "$unwind": "$pos" },
{ "$group": {
"_id": "$_id",
"msgs": {
"$push": {
"$cond": [
{ "$eq": [ "$pos", 1 ] },
"$first",
{ "$cond": [
{ "$eq": [ "$pos", 2 ] },
"$second",
{ "$cond": [
{ "$eq": [ "$pos", 3 ] },
"$third",
{ "$cond": [
{ "$eq": [ "$pos", 4 ] },
"$forth",
{ "$cond": [
{ "$eq": [ "$pos", 5 ] },
"$fifth",
{ "$cond": [
{ "$eq": [ "$pos", 6 ] },
"$sixth",
false
]}
]}
]}
]}
]}
]
}
}
}},
{ "$unwind": "$msgs" },
{ "$match": { "msgs": { "$ne": false } }},
{ "$group": {
"_id": "$_id",
"msgs": { "$push": "$msgs" }
}}
])
You get the top results in the array, up to six entries:
{ "_id" : 123, "msgs" : [ 1, 2, 3, 4, 5, 6 ] }
{ "_id" : 456, "msgs" : [ 12, 13, 14, 15 ] }
As you can see here, loads of fun.
After you have initially grouped you basically want to "pop" the $first
value off of the stack for the array results. To make this process simplified a little, we actually do this in the initial operation. So the process becomes:
$unwind
the array$eq
equality match$sort
the results to "float" false
unseen values to the top ( this still retains order )$group
back again and "pop" the $first
unseen value as the next member on the stack. Also this uses the $cond
operator to replace "seen" values in the array stack with false
to help in the evaluation.The final action with $cond
is there to make sure that future iterations are not just adding the last value of the array over and over where the "slice" count is greater than the array members.
That whole process needs to be repeated for as many items as you wish to "slice". Since we already found the "first" item in the initial grouping, that means n-1
iterations for the desired slice result.
The final steps are really just an optional illustration of converting everything back into arrays for the result as finally shown. So really just conditionally pushing items or false
back by their matching position and finally "filtering" out all the false
values so the end arrays have "six" and "five" members respectively.
So there is not a standard operator to accommodate this, and you cannot just "limit" the push to 5 or 10 or whatever items in the array. But if you really have to do it, then this is your best approach.
You could possibly approach this with mapReduce and forsake the aggregation framework all together. The approach I would take ( within reasonable limits ) would be to effectively have an in-memory hash-map on the server and accumulate arrays to that, while using JavaScript slice to "limit" the results:
db.messages.mapReduce(
function () {
if ( !stash.hasOwnProperty(this.conversation_ID) ) {
stash[this.conversation_ID] = [];
}
if ( stash[this.conversation_ID.length < maxLen ) {
stash[this.conversation_ID].push( this._id );
emit( this.conversation_ID, 1 );
}
},
function(key,values) {
return 1; // really just want to keep the keys
},
{
"scope": { "stash": {}, "maxLen": 10 },
"finalize": function(key,value) {
return { "msgs": stash[key] };
},
"out": { "inline": 1 }
}
)
So that just basically builds up the "in-memory" object matching the emitted "keys" with an array never exceeding the maximum size you want to fetch from your results. Additionally this does not even bother to "emit" the item when the maximum stack is met.
The reduce part actually does nothing other than essentially just reduce to "key" and a single value. So just in case our reducer did not get called, as would be true if only 1 value existed for a key, the finalize function takes care of mapping the "stash" keys to the final output.
The effectiveness of this varies on the size of the output, and JavaScript evaluation is certainly not fast, but possibly faster than processing large arrays in a pipeline.
Vote up the JIRA issues to actually have a "slice" operator or even a "limit" on "$push" and "$addToSet", which would both be handy. Personally hoping that at least some modification can be made to the $map
operator to expose the "current index" value when processing. That would effectively allow "slicing" and other operations.
Really you would want to code this up to "generate" all of the required iterations. If the answer here gets enough love and/or other time pending that I have in tuits, then I might add some code to demonstrate how to do this. It is already a reasonably long response.
Code to generate pipeline:
var key = "$conversation_ID";
var val = "$_id";
var maxLen = 10;
var stack = [];
var pipe = [];
var fproj = { "$project": { "pos": { "$const": [] } } };
for ( var x = 1; x <= maxLen; x++ ) {
fproj["$project"][""+x] = 1;
fproj["$project"]["pos"]["$const"].push( x );
var rec = {
"$cond": [ { "$eq": [ "$pos", x ] }, "$"+x ]
};
if ( stack.length == 0 ) {
rec["$cond"].push( false );
} else {
lval = stack.pop();
rec["$cond"].push( lval );
}
stack.push( rec );
if ( x == 1) {
pipe.push({ "$group": {
"_id": key,
"1": { "$first": val },
"msgs": { "$push": val }
}});
} else {
pipe.push({ "$unwind": "$msgs" });
var proj = {
"$project": {
"msgs": 1
}
};
proj["$project"]["seen"] = { "$eq": [ "$"+(x-1), "$msgs" ] };
var grp = {
"$group": {
"_id": "$_id",
"msgs": {
"$push": {
"$cond": [ { "$not": "$seen" }, "$msgs", false ]
}
}
}
};
for ( n=x; n >= 1; n-- ) {
if ( n != x )
proj["$project"][""+n] = 1;
grp["$group"][""+n] = ( n == x ) ? { "$first": "$msgs" } : { "$first": "$"+n };
}
pipe.push( proj );
pipe.push({ "$sort": { "seen": 1 } });
pipe.push(grp);
}
}
pipe.push(fproj);
pipe.push({ "$unwind": "$pos" });
pipe.push({
"$group": {
"_id": "$_id",
"msgs": { "$push": stack[0] }
}
});
pipe.push({ "$unwind": "$msgs" });
pipe.push({ "$match": { "msgs": { "$ne": false } }});
pipe.push({
"$group": {
"_id": "$_id",
"msgs": { "$push": "$msgs" }
}
});
That builds the basic iterative approach up to maxLen
with the steps from $unwind
to $group
. Also embedded in there are details of the final projections required and the "nested" conditional statement. The last is basically the approach taken on this question:
Does MongoDB's $in clause guarantee order?
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With