I have two dataframes each with multiple rows per ID. I need to return the closest date and related data from the second dataframe based on the ID and date of the first dataframe - adding the related data to the first dataframe. This also has to work with NA
s present in the second dataframe. Example data:
set.seed(42)
df1 <- data.frame(ID = sample(1:3, 10, rep=T), dateTarget=(strptime((paste
(sprintf("%02d", sample(1:30,10, rep=T)), sprintf("%02d", sample(1:12,10, rep=T)),
(sprintf("%02d", sample(2013:2015,10, rep=T))), sep="")),"%d%m%Y")), Value=sample(15:100, 10, rep=T))
df2 <- data.frame(ID = sample(1:3, 10, rep=T), dateTarget=(strptime((paste
(sprintf("%02d", sample(1:30,20, rep=T)), sprintf("%02d", sample(1:12,20, rep=T)),
(sprintf("%02d", sample(2013:2015,20, rep=T))), sep="")),"%d%m%Y")), ValueMatch=sample(15:100, 20, rep=T))
Something from base
preferable - split
and a mixture of the apply
family?
The final table would look something like:
ID dateTarget Value dateMatch ValueMatch
1 3 22-02-15 52 09-03-15 94
2 1 29-12-14 18 06-12-14 88
3 3 08-12-15 98 06-07-15 48
4 2 14-01-13 52 08-04-13 77
5 2 29-07-15 97 01-08-15 68
6 3 30-05-13 91 01-04-13 85
7 1 04-11-13 70 21-02-14 35
8 2 15-06-15 98 01-08-15 68
9 3 17-11-14 68 15-12-14 95
P.S. Are there better ways of generating random dates (not using seq.Date
)?
Here is the solution based on the base package:
z <- lapply(intersect(df1$ID,df2$ID),function(id) {
d1 <- subset(df1,ID==id)
d2 <- subset(df2,ID==id)
d1$indices <- sapply(d1$dateTarget,function(d) which.min(abs(d2$dateTarget - d)))
d2$indices <- 1:nrow(d2)
merge(d1,d2,by=c('ID','indices'))
})
z2 <- do.call(rbind,z)
z2$indices <- NULL
print(z2)
# ID dateTarget.x Value dateTarget.y ValueMatch
# 1 3 2015-11-14 47 2015-07-06 48
# 2 3 2015-12-08 98 2015-07-06 48
# 3 3 2015-02-22 52 2015-03-09 94
# 4 3 2014-11-17 68 2014-12-15 95
# 5 3 2013-05-30 91 2013-04-01 85
# 6 1 2013-11-04 70 2014-02-21 35
# 7 1 2014-12-29 18 2014-12-06 88
# 8 2 2013-01-14 52 2013-04-08 77
# 9 2 2015-07-29 97 2015-08-01 68
# 10 2 2015-06-15 98 2015-08-01 68
We can also do this by one-liner with dplyr
.
library(dplyr)
left_join(df1, df2, by = "ID") %>%
mutate(dateDiff = abs(dateTarget.x - dateTarget.y)) %>%
group_by(ID, dateTarget.x) %>%
filter(dateDiff == min(dateDiff))
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With