I try to understand under what circumstances a C++ compiler is able to perform loop fusion and when not.
The following code measures the performance of two different ways to calculate the squared doubles (f(x) = (2*x)^2
) of all values in a vector.
#include <chrono>
#include <iostream>
#include <numeric>
#include <vector>
constexpr int square( int x )
{
return x * x;
}
constexpr int times_two( int x )
{
return 2 * x;
}
// map ((^2) . (^2)) $ [1,2,3]
int manual_fusion( const std::vector<int>& xs )
{
std::vector<int> zs;
zs.reserve( xs.size() );
for ( int x : xs )
{
zs.push_back( square( times_two( x ) ) );
}
return zs[0];
}
// map (^2) . map (^2) $ [1,2,3]
int two_loops( const std::vector<int>& xs )
{
std::vector<int> ys;
ys.reserve( xs.size() );
for ( int x : xs )
{
ys.push_back( times_two( x ) );
}
std::vector<int> zs;
zs.reserve( ys.size() );
for ( int y : ys )
{
zs.push_back( square( y ) );
}
return zs[0];
}
template <typename F>
void test( F f )
{
const std::vector<int> xs( 100000000, 42 );
const auto start_time = std::chrono::high_resolution_clock::now();
const auto result = f( xs );
const auto end_time = std::chrono::high_resolution_clock::now();
const auto elapsed = end_time - start_time;
const auto elapsed_us = std::chrono::duration_cast<std::chrono::microseconds>(elapsed).count();
std::cout << elapsed_us / 1000 << " ms - " << result << std::endl;
}
int main()
{
test( manual_fusion );
test( two_loops );
}
The version with two loops takes about twice as much time as the version with one loop, even with -O3
for GCC and Clang.
Is there a way to allow the compiler to optimize two_loops
into being as fast as manual_fusion
without operating in-place in the second loop? The reason I'm asking is I want to make chained calls to my library FunctionalPlus like fplus::enumerate(fplus::transform(f, xs));
faster.
You can try modify your two_loops function as follows:
int two_loops( const std::vector<int>& xs )
{
std::vector<int> zs;
zs.reserve( xs.size() );
for ( int x : xs )
{
zs.push_back( times_two( x ) );
}
for ( int i=0 : i<zs.size(); i++ )
{
zs[i] = ( square( zs[i] ) );
}
return zs[0];
}
The point is to avoid allocating memory twice and push_back to another vector
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With