I have this fairly simple function to compute the mean of elements of a big list, using two accumulators to hold the sum so far and the count so far:
mean = go 0 0
where
go s l [] = s / fromIntegral l
go s l (x:xs) = go (s+x) (l+1) xs
main = do
putStrLn (show (mean [0..10000000]))
Now, in a strict language, this would be tail-recursive, and there would be no problem. However, as Haskell is lazy, my googling has led me to understand that (s+x) and (l+1) will be passed down the recursion as thunks. So this whole thing crashes and burns:
Stack space overflow: current size 8388608 bytes.
After further googling, I found seq
and $!
. Which it seems I don't understand because all my attempts at using them in this context proved futile, with error messages saying something about infinite types.
Finally I found -XBangPatterns
, which solves it all by changing the recursive call:
go !s !l (x:xs) = go (s+x) (l+1) xs
But I'm not happy with this, as -XBangPatterns
is currently an extension. I would like to know how to make the evaluation strict without the use of -XBangPatterns
. (And maybe learn something too!)
Just so you understand my lack of understanding, here's what I tried (the only try that compiled, that is):
go s l (x:xs) = go (seq s (s+x)) (seq l (l+1)) xs
From what I could understand, seq should here force the evaluation of the s and l argument, thus avoiding the problem caused by thunks. But I still get a stack overflow.
I've written extensively on this:
Firstly, yes, if you want to require strict evaluation of the accumulators use seq
and stay in Haskell 98:
mean = go 0 0
where
go s l [] = s / fromIntegral l
go s l (x:xs) = s `seq` l `seq`
go (s+x) (l+1) xs
main = print $ mean [0..10000000]
*Main> main
5000000.0
Secondly: strictness analysis will kick in if you give some type annotations, and compile with -O2:
mean :: [Double] -> Double
mean = go 0 0
where
go :: Double -> Int -> [Double] -> Double
go s l [] = s / fromIntegral l
go s l (x:xs) = go (s+x) (l+1) xs
main = print $ mean [0..10000000]
$ ghc -O2 --make A.hs
[1 of 1] Compiling Main ( A.hs, A.o )
Linking A ...
$ time ./A
5000000.0
./A 0.46s user 0.01s system 99% cpu 0.470 total
Because 'Double' is a wrapper over the strict atomic type Double#, with optimizations on, and a precise type, GHC runs strictness analysis and infers that the strict version will be ok.
import Data.Array.Vector
main = print (mean (enumFromToFracU 1 10000000))
data Pair = Pair !Int !Double
mean :: UArr Double -> Double
mean xs = s / fromIntegral n
where
Pair n s = foldlU k (Pair 0 0) xs
k (Pair n s) x = Pair (n+1) (s+x)
$ ghc -O2 --make A.hs -funbox-strict-fields
[1 of 1] Compiling Main ( A.hs, A.o )
Linking A ...
$ time ./A
5000000.5
./A 0.03s user 0.00s system 96% cpu 0.038 total
As described in the RWH chapter above.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With